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Abstract. The application of the Principal Component Analysis (PCA) method for early detection of leakages in the pipeline system of a steam boiler 
in a thermal-electrical power plant is presented and discussed. The PCA model built from historical measurements of 12 selected process variables, 
mapped to the reduced space of three Principal Components (PC) of the highest magnitude, was used to establish the confidence ellipsoid, i.e. the 
feasible region in the PC coordinates, occupied by the values of process variables related to the ‘healthy’ system. Changes of the current location of 
the process operating point in the PC space created the ‘fault trajectory’ and were the basis for making a decision of leakage detection. 
 
Streszczenie. W artykule przedstawiono zastosowanie metody składowych głównych (PCA) do wczesnego wykrywania wycieków z rurociągów 
kotła parowego pracującego w elektrociepłowni miejskiej. Model PCA, zbudowany na podstawie pomiarów 12 wybranych zmiennych procesowych, 
przedstawiony w przestrzeni trzech składowych głównych (PC) o największych modułach, został wykorzystany do określenia tzw. elipsoidy ufności, 
tj. obszaru w przestrzeni PC, w którym mieszczą się wartości zmiennych odpowiadające poprawnemu działaniu systemu. Zmiany aktualnego punktu 
pracy kotła tworzyły tzw. trajektorię uszkodzenia w przestrzeni PC i były podstawą do podejmowania decyzji na temat ew. wycieku z rurociągów. 
(Zastosowanie metody PCA do wczesnego wykrywania wycieków w rurociągach kotła parowego) 
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Introduction 
Continuous technological progress and increasing 

complexity of modern manufacturing plants require 
specialized solutions which can provide sufficiently high 
level of reliability and guarantee safety of the technical 
personnel. Despite increasing reliability of all elements of 
the plant and substantial development of computer-based 
plant control systems, a variety of faults of technological 
components, measurement equipment, control devices and 
staff errors can cause serious material or human losses. 
That is why the efficient tools for automatic (or at least 
semiautomatic) on-line fault detection and diagnosis of the 
production processes are extremely important. A major 
concern in implementation of a fault detection system is its 
capability of indentifying incipient faults, while maintaining 
the false alarm rate to an acceptable minimum. 

Fault diagnosis methods can be divided into three main 
categories [1]: 

1) model based, using mathematical formulation of the 
knowledge about the system (expressed in the form 
of physical, balance and chemical equations or the 
black-box or grey-box model) to detect and analyze 
faults; 

2) signal processing based, using spectral analysis, 
principal component analysis (PCA), wavelet 
transforms and fast Fourier transforms (FFTs) to 
analyze system behavior and identify faults; 

3) artificial intelligence based, using neural networks, 
fuzzy systems, expert systems, support vector 
machines (SVM) or grey correlation to develop 
diagnostic systems that, once trained, can identify 
specific faults. 

Boilers are important components in power, chemical 
and oil refinery industries; they transform water into steam 
for power generation or other industrial applications. A 
common boiler fault is the tube leakage in the riser and 
downcomer sections due to aging and thermal stress. Early 
detection of such faults during device operation is 
important, as it helps in reducing possible damage to 
equipment and productivity loss caused by (otherwise) 
unscheduled boiler shutdown [2]. Early recognition of small 
leakages in the pipelines can also protect the plant against 
secondary malfunctions or damages and can provide 
improved safety level for process operators. 

The paper presents the application of a data-driven 
method of statistical process monitoring to early detection of 
the leakage in a pipeline system of a steam boiler. As the 
construction and identification of a mathematical model of 
the plant under study is almost impossible in industrial 
practice (due to production plans, high costs of 
experiments, organizational problems, insufficient human 
resources, etc.), we decided to adopt and tune the Principal 
Component Analysis (PCA) method to process data 
acquired by the existing measurement and control system. 
In a number of numerical experiments based on our 
approach (described and discussed in the paper), we 
confirmed the usefulness of the PCA method for solving a 
complex engineering problem of fault detection in a thermal-
electrical power plant. 

Briefly, the paper is organized as follows. Section 2 
presents a short review of boiler leak detection methods, 
currently used in industrial practice or developed and 
verified on laboratory equipment. Section 3 focuses on 
theoretical backgrounds of the Principal Component 
Analysis algorithm. In Section 4 some modifications of the 
basic PCA methods in the use to fault detection are 
presented, as well as some successful applications of PCA 
to boiler fault detection problems. In Section 5 the boiler 
water system working in Elektrocieplownia Bialystok is 
briefly presented. The problem statement of leakage 
detection in the steam boiler pipeline system in 
Elektrocieplownia Bialystok and analysis of available 
measurement data are the contents of Section 6. This 
section also presents the proposed leakage detection 
algorithm and results obtained on a number of leakages 
from the period 2010-2015, with detailed discussion of two 
case studies. Finally, Section 7 offers some concluding 
remarks and considerations about further work on 
improvement of fault detection accuracy and sensitivity. 
 
Fault detection in a pipeline system of a steam boiler – 
current approaches 

Detection and localization of leaks in a pipeline system 
of an industrial steam boiler is a difficult engineering and 
research problem. Boilers are complex nonlinear systems, 
which work under time-varying operating conditions (e.g. 
due to daily and seasonal changes of heat/electricity 
demands), what causes various changes in their transient 
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responses. Also the number of process disturbances and 
their various characteristics (e.g. fluctuations in the 
combustion process), influencing the process variables and, 
finally, the plant characteristics, are the factors which make 
mathematical modeling of the boiler considerably difficult. 
Mathematical models, potentially useful for pipeline leak 
detection, have usually the form of the black-box models 
[3], as a small class of models based on physical 
relationships can be adapted to a certain industrial boiler 
only in a limited scope. 

The tube leak is a special type of the process fault, 
which belongs to the class of gross error problems [2]. The 
development of the fault is itself a non-stationary process, 
which at its early stage may be compensated and ‘masked’ 
by the normal control actions, as in the standard control 
response to process disturbances. Due to small loses of 
mass and energy per time unit the pipe leaks at their early 
stages can be hardly detected with the use of simple 
methods of limitations check or statistical analysis. The 
above reasons cause that the steady-state based methods 
do not provide satisfactory performance in the leak 
detection problems. 

The methods of leak detection in pipelines of steam 
boilers, which are most frequently used in industrial 
practice, can be roughly divided into the following groups 
[4]: 

1) acoustic monitoring and analysis, which makes use 
of acoustic waves generated by the escaping steam; 

2) steam/water balance testing; 
3) monitoring of gas humidity in the flue; 
4) other methods, based on monitoring and analysis of 

process variables and their relationships, sometimes 
supported by mathematical models of the 
technological process. 

The methods based on acoustic monitoring and analysis 
are the oldest industrial implementations of the leak 
detection methods in steam boilers, patented from the mid 
70’s [5] and systematically developed through the next 
decades. They require installation of rather expensive 
devices (sensors) and careful tuning, however they cannot 
detect small to medium leaks (less than about 10 000 kg/h). 
The methods make use of high frequency pressure waves 
(generated by the fluid escaping from a leak in a boiler 
tube), which may be converted into electronic voltage 
signals with a variety of sensitive dynamic pressure 
transducers (sensors) that are in contact with the medium of 
interest [6]. The multi-channel signals are amplified, filtered 
and processed to determine energy content [7] and then 
continuously analyzed to detect abnormalities 
corresponding to leaks and, if possible, to localize the 
probable place where the fault occurs. 

The major problems influencing the sensitivity and 
reliability of the acoustic system for leakage detection are 
changes of wave characteristics caused by the 
environmental factors (e.g. boiler construction, leakage 
localization) and physical phenomena (e.g. deflection, 
interference, etc.) which vary background noise level and 
attenuate sound within the medium. Another objective is 
relatively precise localization of the leakage, which can 
save some time and decrease the repair cost after shutting 
down of the installation. Several systems of multi-
microphone arrays for passive source localization have 
been developed, which take into consideration the effect of 
sound propagation through the combustion temperature 
gradient field inside the boiler and the reverberation in the 
boiler enclosure on the leakage localization [8, 9]. Recent 
approaches to leak detection and localization employ 3D 
source location techniques [10], with an accelerometer used 
to collect structure borne noise. 

The fast Fourier transform (FFT) for power spectral 
density estimation has been traditionally used for the 
purpose of leak detection – to differentiate the acoustic 
spectrum of a tube leak from the ambient acoustic noise 
due to combustion. To improve reliability of fault detection in 
the complex signal environment present in the boiler, the 
autoregressive moving average methods have been also 
employed to produce earlier and reliable detection of tube 
leaks [11]. In the last years the time-frequency 
decomposition tools (e.g. the wavelet transform), combined 
with the multi-microphone passive acoustic source 
localization method [12], have been applied as efficient 
methods to remove the effect of the background noise in 
boilers. The accuracy of the leak source localization can be 
improved effectively by applying the cepstrum method, used 
as a tool to reduce the reverberation effects of the leak 
source location. 

Steam/water balance testing is quite simple, but rather 
time consuming and insensitive to small leaks; the maximal 
frequency of tests is usually too low for preventing serious 
damages of the pipeline system. The natural consequence 
of a leakage is the increase of the amount of water needed 
to satisfy the steam demand, what can be used in the mass 
balance method. The flow meters around the waterside of 
the boiler may be used to calculate the amount of water 
entering and leaving the boiler. By the combination of 
measurements of flow and chemical concentration, the 
mass balance of a specific stable and nonvolatile species 
(such as phosphate or molybdate) around the waterside of 
the boiler may be calculated. If a statistically significant loss 
is noticed, the water leak is suspected and an alarm is 
triggered to alert the operator [13]. However in typical 
situation the boiler does not operate in the steady-state 
conditions (with a known and constant heating value of the 
fuel), so the method is significantly affected by the process 
noise, i.e. variations in the individual and composite signals. 
Another drawback of the mass balance method is that it 
cannot be used for localization of the leakage. 

The accuracy of the mass balance method is also 
decreased by the blowdown effect. The blowdown is used 
to control the dissolved solids in the boiler water, based on 
results from periodic boiler water testing. As it was noticed 
[14], the blowdown effect is important in that it constitutes 
up to 3% of the boiler mass balance equations. It can 
contribute to missed or false alarms if it is not compensated 
for, accurately, in the leak detection method. The least 
squares (LS) algorithm may be used for correction of the 
ARX model for the boiler water/steam mass balance due to 
the blowdown effect. 

The monitoring of gas humidity method has limited 
specificity, as the measured changes of humidity can be 
caused by water added to the combustion chamber, soot 
blowing, etc., as well as by the steam leaks to be detected. 
More advanced approaches to leak detection are based on 
the patented Input/Loss Method (1994-2004), which 
computes fuel chemistry, heating value and fuel flow by 
integrating effluent measurements with thermodynamics 
[15]. The method is based on integration of system 
stoichiometrics with thermodynamics (i.e. the boiler 
efficiency and system-wide mass/energy balances). The 
ability to detect tube leaks and their location is highly 
dependent on the ability to compute fuel chemistry online, 
based on system stoichiometrics and to correct errors which 
may be present in any parameter effecting system 
stoichiometrics, e.g. stack CO2, boiler or stack O2, and 
generally stack H2O, injected limestone, air heater leakage, 
O2 in the ambient air, etc. 

Several interesting applications of model-based 
methods of leak detection in the steam boilers have been 



192                                                                           PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 10/2019 

presented in literature in the last few years. Most of the 
methods have not been implemented in industrial practice, 
though the authors used real data recorded in heat and 
electricity plants or performed the experiments on small or 
medium-size pilot plants equipped with measurement 
devices typically used in industry. As the complete boiler 
models based on energy, mass and volume balance and 
other physical and chemical relations are very difficult to be 
built and successfully identified, simplified modeling 
techniques have been employed and boiler response 
characteristics have been used to evaluate the quality of the 
models (comparing to the experiments performed in 
industrial conditions and/or laboratory setup). The most 
successful approaches use different kinds of mathematical 
models of the process running in normal and abnormal 
operating conditions and sophisticated tools for signal 
processing and classification (e.g. Artificial Intelligence 
algorithms: neural networks, fuzzy systems, genetic 
algorithms, etc.). 

The attempts to model static and dynamic behavior of 
steam boilers have been presented in literature for at least 
two decades [16]. Some modeling techniques are based on 
fundamental conservation principles [17, 18], supplemented 
by empirical relations and performance correlations 
obtained from a lab-scale steam cycle setup for which 
dynamic measurements are available. The model is first 
validated quantitatively against steady state values and 
subsequently the dynamic validation is performed, involving 
some disturbances of different magnitude imposed on 
different parts of the plant and on the flue gas mass flow 
[19]. The classical model-based approach to detection of 
leakages and sensor biases employs the least-squares 
algorithm which yields an increased value of the 
performance index when the plant outputs do not match the 
modeled ones. Due to non-stationarity of the process 
caused by various operating conditions and development of 
the fault, historical values of process variables passed to 
the model may be used with time varying forgetting factors 
[20]. Such an approach can improve the reliability of 
detection of leaks and instrument biases under the 
conditions of load disturbances and time variation of the 
system dynamics caused by the system nonlinearity [2]. 

Also the observers and state estimators are used in the 
fault detection schemes to handle both reconstruction of 
immeasurable variables and estimation of process 
parameters with uncertainties in closed-loop stabilized 
systems that operate under strict nonlinear detectability 
conditions. The studies [21, 22] show that the state 
estimator is able to follow the faulty system, detecting faults 
by examining changes in the controlled outputs with respect 
to the setpoint and then probing variations in the 
parameters estimated. The detection mechanism may be 
supported by the fault identification subsystem, which uses 
the information provided from the state estimator about 
differences from normal operation trends. The observers 
are viewed as filters designed to track the dynamics of the 
errors of desirable frequency domain characteristics in the 
presence of a class of model uncertainties (e.g. caused by 
process faults), as well as persistent excitation and 
measurement noise. Some other approaches use the 
Kalman filter to improve state estimation accuracy by 
preserving the nonlinearities of the boiler equations [23]. 

In the recent years the AI tools, especially artificial 
neural networks (ANN), have been successively applied for 
building non-parametric approximate models of heat 
transfer and combustion processes in boilers, used in 
control tasks and fault detection and identification problems. 
The fault tolerant control schemes presented in literature 
[24, 25] use the ANN as universal approximators of any 

nonlinear input-output mappings, both as the process 
models and as nonlinear controllers, periodically adapted to 
changeable process characteristics with the use of real-time 
data taken from a running boiler system [26]. The most 
attractive is the ability of self-adaptation of a neural net-
based fault tolerant control system, yielding a small 
stabilization error and a short time of adjusting to 
changeable operating conditions [27]. 

Neural networks are also combined with fuzzy logic, 
both for modeling of a boiler system and for detection of 
process faults [28]. The system based on the artificial 
neural network and the fuzzy logic, applied to leak detection 
in the boiler tube has been also patented by Alouani and 
Chang [29]. In their solution the instant detection scheme 
starts with identification of the boiler tube leak process 
variables, which are divided into universal sensitive 
variables, local leak sensitive variables, group leak sensitive 
variables, and subgroup leak sensitive variables, and which 
may be automatically obtained using a data driven 
approach and a leak sensitivity function. In the first part of 
the solution there is a direct mapping between appropriate 
leak sensitive variables and the leak behavior, provided by 
a trained artificial neural network (ANN). In the second 
design ANN are used for learning, while approximate 
reasoning and inference engines performed by fuzzy 
systems are used for decision making. Advantages of such 
an approach include the use of already monitored process 
variables, without any additional hardware and/or 
maintenance requirements. Systematic processing of 
recorded data does not require an expert system and/or a 
skilled operator, and the systems are portable and can be 
easily tailored for use on a variety of different boilers when 
properly ‘tuned’ to specific plant data. 

Some papers [30] show a combination of fuzzy logic, 
neural networks and genetic algorithms (GA), employed to 
develop proper models for the subsystems of a steam 
boiler. The multilayer neuro-fuzzy models approximate the 
subsystems of a real plant, while the GA extracts the 
optimized fuzzy rules. In several approaches also the expert 
system reasoning and Bayesian networks are used in the 
boiler fault detection schemes [31]. The main benefit of 
these approaches, comparing with probabilistic temporal 
models, is that the representation based on state changes 
at different times instead of state values at different times, is 
able to represent complex systems changing over time. 
 
Principal Component Analysis – theoretical 
preliminaries 

Principal component analysis (PCA) is a multivariate 
unsupervised statistic technique, commonly used in process 
monitoring [32]. The main benefits in processing a big data 
set using the PCA method are: dimensionality reduction, 
decorrelation, and, to some extents, feature extraction and 
data denoising, saving as much information from the 
original variables, as possible. PCA transforms a set of 
correlated random variables with the zero mean value into a 
small number of decorrelated variables called principal 
components, where the first principal component (PC1) 
defines the direction of the greatest variability within the 
original data set, with subsequent principal components 
explaining a decreased amount of variability. Consequently 
lower order principal components can be excluded without 
losing essential information from the original variables, as 
they characterize mainly the process noise [33]. 

Data to be decomposed by the PCA method are 

gathered in a matrix  n mX R , consisting of m variables 
and n samples (observations), as below: 
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Assuming that each data vector (which constitutes a 
column of the matrix X) is centered about its mean and 
scaled to unity variance, and performing a singular value 
decomposition of the matrix X, we may express the 
empirical covariance matrix by: 
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where T m m Σ ΣΛ R  is a diagonal matrix with 

nonnegative elements of its main diagonal and n nU R  

and m mV R  are unitary matrices. 

The diagonal matrix  is the covariance matrix of the 
principal components and consists of eigenvalues of the 
covariance matrix S. The elements on the main diagonal of 
the matrix  are real eigenvalues, arranged in not 
increasing order (i.e. 1 2 0m      ) and the i-th 

eigenvalue is the square of the i-th singular value: 2
i i   

[34]. 
The data matrix X is decomposed by the projection onto 

two orthogonal latent subspaces: the principal component 

subspace ( X̂ ), capturing the most of data variations and 

the residual subspace ( X ) that includes some uncorrelated 
changes and noises [35]: 
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where the matrices T (score matrix) and P (loading matrix) 
correspond to the largest singular values, E denotes the 

residual portion of X and the products TTT  and TPP  are 
orthogonal. 

The number of principal components l usually influences 
the sensitivity of fault detection and must be a compromise 
between significant reduction of data dimensionality (l << m) 
and maximal retention of data variability (for bigger values 
of l). A general, simple and intuitive approach, considers the 
cumulative percentage of the total variation which one 
desires that the selected PCs contribute [33]: 
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It turned out that when the accumulate contribution rate 
crm is above 85% (or between 80% and 90%), the first l 
principal components could sufficiently reflect the main 
information about the system [36]. 

A general approach for detecting the abnormal status of 
the process employs the T2 and SPE (Q) statistics for the 
loading vectors retained in the PCA model [37]. The T2 
statistics, which measures the variations in the score space 
and can detect most of the faults that produced large mean 
shifts in the measurement variables, can be computed by: 
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where Σl contains the first l rows and columns of the matrix 
Σ, and x is the observation vector. 

The appropriate threshold for T2 statistics, based on the 
level of significance α, can be determined as defined below 
[38]: 
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where Fα(m, n-m) is the value of F-distribution at the 
significance level of α with m and (n-m) degrees of freedom. 

The squared prediction error (SPE or Q) statistics 
measures the amount of variation not captured by the PCA 
model, what may be considered as the lack of fit of the PCA 
model to the data. The Q statistics is then defined on the 
residual vector 1kx  [39]: 
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i.e. on the portion of the data space which corresponds to 
the lowest (m-l) singular values. 

The Q statistics can be monitored by using the threshold 
value computed as: 
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and cα is the normal deviate corresponding to the upper 
(1−α) percentile. 

Any value of T2 and Q statistics that exceeds the 
threshold values defined by (6) and (8) indicates abnormal 
(faulty) conditions of the process under monitoring. 
However, when using T2 and SPE statistics for process 
monitoring, the calculation of their control limits is made 
under the assumption that the latent variables are 
Gaussian-distributed [32]. Otherwise, the control thresholds 
(6) and (8) may inaccurately represent the boundary of 
normal operation region of the process, so they may be 
misleading or cause false alarms. 
 
Application of Principal Component Analysis in fault 
detection 
 
PCA and its modifications in statistical process monitoring 

In the fault detection and identification problem, the 
effectiveness of the approaches based on quantitative 
model-based methods (e.g. based on state/parameter 
observers or methods of parameter estimation employing 
mathematical models constructed from the first principle) 
strongly depends on the precision of the mathematic 
models being used. The qualitative model-based methods 
which use cause-effect reasoning (e.g. fault trees analysis 
or Bayesian networks) are restricted to systems with a 
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relatively small number of variables or states. The 
alternative approaches make use of data driven methods, 
such as those involving artificial intelligence techniques 
(e.g. neural networks or fuzzy systems) and statistical 
dimensionality reduction (e.g. PCA). The above fault 
detection methods find patterns (corresponding to normal 
operating conditions and faulty conditions) or compute 
meaningful statistics directly from historical data, eliminating 
the use of detailed models for large-scale systems which 
can be expensive and difficult to develop [37]. 

It must be however mentioned that the efficiency of data 
driven methods is also limited by several factors. The 
process monitoring of a real large scale system is difficult 
due to complex interactions between faults (especially 
multiple) and symptoms, high correlation among the 
measured variables and a large number of sensors, 
actuators and process devices to be monitored. So the 
large input dimension, which increases the computational 
requirements and the complexity of the fault detection 
system, is probably the main factor which decreases the 
effectiveness of process monitoring. Also the use of neural 
networks for fault classification is limited due to their black 
box characteristics, high computational load for complex 
systems and the necessity to construct (in fact) a separate 
neural classifier for each fault to be detected; the above 
drawbacks are only slightly reduced by the use of fuzzy and 
neuro-fuzzy systems. 

That is why statistical methods for dimensionality 
reduction, such as Principal Component Analysis, have 
been widely applied to capture the variability in the data 
corresponding to fault occurrence and to express the 
relationships between process variables. Another common 
feature of statistical methods is their ability to reduce 
correlations between variables, what enables efficient 
extraction of the relevant information and analysis of 
changes in data characteristics. The PCA method can 
compress high dimensional and correlated process 
measurements into much lower dimensions while keeping 
the important information. The PCA has been successfully 
used in numerous areas including data compression, 
feature extraction, image processing, pattern recognition, 
signal analysis, and process monitoring [40]. However the 
level of dimensionality reduction, i.e. the ‘optimal’ number of 
principal component (PCs) to retain, which can provide the 
best sensitivity of fault detection and the lowest dimension 
of the decision space, is still under intensive investigations 
[41]. 

An important problem for the PCA monitoring approach 
is that the conventional PCA and its basic modification – the 
sliding window principal component analysis (SWPCA), are 
linear methods, while most processes are nonlinear or 
parameter varying [42]. That is why there are several 
modifications of the basic PCA method, like the 
“generalized PCA” (GPCA), in which the normal data set is 
extended to include nonlinear functions of its elements and 
the PCA transformation is performed on the extended data 
set. The recursive PCA method contains an adaptation 
mechanism which is especially suitable for time-dependent 
processes with slow changes [35, 38]. The Multi-scale 
principal component analysis (MSPCA), which is a 
combination of PCA and wavelet analysis, removes the 
autocorrelations of variables by means of wavelet analysis 
and eliminates cross-correlations between variables with 
PCA. The Multiway Principal Component Analysis (MPCA) 
is the extension of the PCA to batch processes. In that 
method the normal batch data are compressed and the 
information is extracted by projecting the data onto a low-
dimensional space that summarizes both the variables and 
their time trajectories. Having established the normal 

process behavior, the process of a given batch is then 
monitored by comparing the time progression of the 
projections in the reduced space with those of the normal 
batch data [43]. Also the combinations of neural networks 
and the PCA into the nonlinear principal component 
analysis (NLPCA) were found to be useful for fault 
detection. In order to increase the sensitivity of the residuals 
with respect to various faults and achieve fast and robust 
detection, the structured residuals generated from both 
partial PCA and isolation enhanced PCA can be evaluated, 
employing the CUSUM method [44]. 

 
Principal Component Analysis for steam boiler fault 
detection 

Several papers have been published about the use of 
Principal Components Analysis to detection faults in steam 
boilers. The authors use data obtained from the literature 
models or real-life steam boilers, working in normal 
operating conditions and in a limited set of abnormal states, 
caused by abrupt faults. Decisions about assessment of the 
considered data set to a specific class of fault is made on 
the basis of T2 and Q statistics, sometimes used together 
with the prediction residual sum of squares (PRESS) 
statistic [38]. In the publications which use mathematical 
models of the plant the faults are typically emulated by 
changing values of selected model parameters. In general, 
the authors report satisfactory results of the PCA-based 
approach to boiler fault detection [45]; however the 
reliability may substantially differ for various changes of 
model parameters. 

To overcome the problem of frequent changes of the 
plant operating point a set of principal component models 
(PCMs) corresponding to stable operating points can be 
built – each of them is built on the basis of a data subset 
separated (e.g. with the use of the K-mean cluster analysis) 
from the entire process data [46]. During the detection 
stage the PCM suitable for the current operating condition 
may be dynamically selected (e.g. based on fuzzy data 
partitioning) and appropriate statistics may be calculated. 
Also other two problems have to be solved: the first is how 
to pick up the modeling data and build the multi-PCM, the 
second one is how to implement the operating condition 
adaptability of the PCM during fault detection. Some other 
papers [36, 47] confirm that the multi-PCM method is an 
efficient approach to fault detection in changeable operating 
conditions. 

The most comprehensive approach to the application of 
the PCA method to leak detection in a steam boiler system 
is presented in the work of Xi Sun et al. [48]. The authors 
implemented some extensions of the basic PCA method 
and tested the sensitivity of the detection system using the 
simulation model and real-life data obtained from the 
Syncrude Canada utility plant, which is an industrial co-
generation system, utilizing a complex header system for 
steam distribution. The authors proposed a new data 
preprocessing scheme which can reduce the negative 
influence of noise and disturbances on detection reliability 
and developed the novel moving cumulative alarm (MCA) 
techniques combined with T2 and SPE. Also a dynamic 
PCA model, based on changeable boiler characteristics, 
was developed and studied in the paper. The leak detection 
results using real industrial leak data demonstrate that the 
proposed approach significantly reduced the false alarms 
(which exist in the conventional PCA) and gives early fault 
warnings to the operators. 

 
Boiler water system in Elektrocieplownia Bialystok 

The OP-230 boiler, manufactured by RAFAKO Ltd. 
(Raciborz, Poland), is a part of the BC-50 thermal unit. The 
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unit operates between 25 MWe and 55 MWe, providing 230 
t of steam per hour (as a maximum continuous output) and 
has a back-pressure extraction turbine for district heating. 
The OP-230 is a one-drum and two-pass boiler with a 
natural water circulation. The unit is 27.0 m high, 7.5 m 
deep, and 8.4 m wide; the simplified furnace scheme is 
shown in Fig. 1. The OP-230 is tangentially fired with 
pulverized bituminous coal and equipped with four burner 
columns (six levels of swirl burners in each of them) 
installed in each of four corners. 

 
Fig.1. The schematic view of the OP-230 boiler [49]. Blue lines 
represent the pipeline system for circulation of water and low-
pressure steam-water mixture. Red lines represent the pipeline 
system for high-pressure steam transportation 
 

The main elements of the OP-230 boiler are: the drum, 
combustion chamber water walls, steam reheater and 
superheater, two attemperators, one economizer, two rotary 
air heaters and a supporting structure with a casing and 
platforms. The steam from the drum is supplied to the first 
stage of the convection superheater in the first pass, 
followed by the first steam attemperator. Then the steam 
flows to a platen superheater (the second stage), the 
second steam attemperator, the steam superheater of the 
third stage and the outlet collector. The air is supplied to the 
fans both from inside and from outside of the boiler room. A 

tube type economizer is located in the second pass of the 
boiler. The swirl burners generate short and wide flame, 
yielding corrosion problems on the walls and elements 
inside the furnace. The OP-230 boiler is equipped with 
antiexplosion protection. 

The OP-230 boiler is equipped with 12 automatic control 
subsystems, which enable stabilization of main process 
variables to provide the proper run of fuel combustion and 
the steam generation process. In the period 2007-2009 in 
Elektrocieplownia Bialystok there was developed the 
Honeywell’s Distributed Control System (DCS) ‘Experion 
Process Knowledge System’, which integrates the individual 
control loops and provides an additional level of high-
integrity of process control and management. The main 
control and safety functions of the ‘Experion PKS’ system 
are: burner/boiler management, process safeguarding and 
emergency shutdown, turbine and compressor 
safeguarding, fire and gas detection and pipeline 
monitoring. The system provides the staff with complete 
real-time information about current operating conditions of 
the technological process and its individual elements and 
also about process faults and failures. 

The following control subsystems act for maintaining a 
stable desired operating point of the boiler: 

 underpressure in the combustion chamber (furnace 
draft), 

 air flow, supplying the burners, 
 air flow to OFA nozzle, 
 air temperature after the steam air heater, 
 contents of O2 in the exhaust fumes, 
 contents of NOx in the exhaust fumes, 
 temperature of the air-pulverized fuel mixture after 

the mills (four control loops), 
 air flow delivered to the mills (four control loops), 
 boiler load, 
 steam temperature at the boiler outlet, 
 steam pressure at the boiler outlet, 
 water level in the drum. 
Despite the existence of the advanced automatic control 

system (with sophisticated Fail Safe Control functions), 
each year over 30 major failures occur, which cause the 
unscheduled shutdowns of the boiler. The reasons of the 
boiler shutdowns, which happened in the last seven years, 
are shown in Table 1. As it can be seen the tube leak in the 
riser and downcomer sections (due to aging and thermal 
stress) is a quite common boiler fault. The faults of this kind 
are rather difficult to detect at their early stage by the 
diagnostic systems or by the process operator during on-
line monitoring of the plant. 

 

Table 1. Reasons of the shutdowns of power generating units in consecutive years 
 

Reason of the block shutdown – year: 2010 2011 2012 2013 2014 2015 2016 

Reaction of safety systems – violation of alarm boundaries 11 19 9 15 19 16 11 

Staff error 4 3 1 3 2 3 3 

Boiler leak 12 10 9 11 7 7 6 

Outer failure (fire, blackout in external electrical grid, etc.) 2 3 2 3 1 4 2 

Total number of shutdowns 29 35 21 32 29 30 22 

 
Boiler pipeline leak detection using real plant data 

In the case of leakages in a boiler pipeline system the 
volume of a tube crack can only increase, so the failure can 
only expand in time. We may consider the development of a 
failure as a dynamic process, of unknown ‘dynamics’, 
usually with time constants changing in time, typically more 

rapidly after reaching a certain level of the tube damage. 
That is why it is very hard to determine the period from 
arising of the pipe leak to the moment it reaches the size 
when the operating staff can notice clear symptoms of the 
failure. The cases when one leak causes cracks of 
neighboring tubes, what can be regarded as failure 
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propagation and multiplication, are also typical. The length 
of the pipeline section (where the leaks arise) amounts to 
several dozen of meters and the cracks appear in random 
locations, what makes it impossible to use only a single 
process variable for diagnostics of the pipe leak. To identify 
the fault with an acceptable level of certainty (as the fault 
effects unfold over time and this information becomes 
available to the personnel) it is necessary to combine 
various measurements acquired from inside the plant and to 
correlate them with typical fault patterns. 

This section describes the application of the PCA 
method to detection of leakages in a pipeline system of a 
steam boiler in Elektrocieplownia Bialystok. We studied 
over 25 episodes of tube cracks, which took place during 
the period 2010-2015 and caused emergency shutdowns of 
the boiler. As the concept of the future advisory scheme for 
early leak detection consists in full cooperation with the 
existing distributed control system, in our trials we used the 
subset of the process variables which are now acquired and 
recorded by the measurement and control equipment. All 
the cases of failures we studied were well documented, i.e. 
we could use all the historical measurement data routinely 
archived in the plant database, as well as the protocols 
(including photographic documentation) from the inspection 
of the pipeline system during its repair. The number of 
cases we studied was too small to make any statistical 
conclusions about the efficiency or the accuracy of the 
presented approach, so the qualitative summary of our 
results is given later at the end of this section. Nevertheless 
we present and discuss two cases (in which the safety 
shutdown of the boiler was required), where the application 
of PCA would successfully detect leaks several hours 
earlier than there were actually noticed by the personnel. 

 
Data analysis and preprocessing 

The set of 37 quantities represents the process 
variables directly measured and recorded by the control 
equipment installed in the OP-230 boiler. Following the 
guidelines of the staff and careful analysis of historical data 
we selected the subset of 12 variables, which changes can 
be clearly observed when the leakage grows up to the 
considerable size. The number of 12 process variables 
includes: 

 steam flow at the boiler output, 
 two temperatures of steam, measured in specific 

locations in the boiler, 
 five temperatures of fumes, measured in specific 

locations in a combustion chamber, 
 feed water flow, measured at the boiler input, 
 air flow at the boiler input, 
 O2 concentration in a selected location, 
 lift in the hearth chamber. 
These variables turned out to be the most sensitive to 

pipeline leaks, so we decided to use them in the 
experiments which examined the usability of the PCA 
method for leak detection. In another series of experiments 
we also examined different subsets of the above variables. 

For the control purposes all the process variables are 
measured with the sampling period of 2 seconds and then 
recorded in the historical database. Such a sampling 
interval is definitely too short, regarding the typically 
observed dynamics of the tube cracking process and not 
useful for the functioning of the automatic system which 
would support leakage diagnostics. That is why we decided 
to aggregate the signal samples by averaging them in the 
period of 2 minutes (i.e. the average value was computed 
from 60 originally recorded samples). We also performed 
some experiments with the time interval equal to 5 minutes, 
but the shorter period gave better results of leak detection. 

The averaging may be also considered as a very simple 
operation of signal filtration, applied to remove fast 
fluctuations of the process variables, irrelevant from the 
point of view of the diagnostic procedure. 

Three kinds of essential variability of heat demand affect 
the operating point of the steam boiler: seasonal (long-
term), weekly or day-to-day (mid-term) and daily (short-
term) changes. The first one can be observed as the 
changes of average monthly production of thermal energy, 
e.g. differences between February and July; however this 
kind of the long-term variability may be neglected in the 
design of the PCA model for leak detection purposes. As it 
will be discussed later, the PCA model which represents the 
‘nominal’ operating conditions is created from data acquired 
in the last 2-4 days, so the distant historical data do not 
influence noticeably the construction of the principal 
component space. The daily profiles show the substantial 
changes of the demand, depending on the time of the day, 
i.e. higher demand during working hours and lower in the 
night. This type of demand variability usually requires 
multiple changes of setpoints of control equipment, device 
configuration, etc. Typical daily load of the steam boiler in 
the winter season (November 2011) is presented in Fig. 2. 

 
Fig.2. Typical daily variability of the steam boiler load in the winter 
season (November 2011). The changes in steam load during the 
24-hour period are usually large (or even huge) and depend on 
interrelated demand on heat and electricity. It can be seen 
something of daily periodicity, however temporary fluctuations 
interfering with a periodical course are substantial 

 

As it can be seen, there may be significant differences 
between demand profiles in the consecutive days, so it is 
not easy to establish a typical daily demand profile. Also the 
overall plant productivity during each 24 hours usually 
changes during a week, what makes the differences 
between demand profiles, e.g. from Sunday and 
Wednesday. That is why most of the signals which can be 
employed for leak detection do not fulfill the assumption of 
stationarity and the PCA model created at the moment from 
a set of historical data can be used for the analysis of a 
boiler state and fault prediction in a limited time horizon. 

 
Solution of the leak detection problem with the use of PCA 

The experimental approach to the leak detection 
problem, proposed in this paper, has two steps repeated 
iteratively every n day: the design (learning) phase and the 
monitoring (testing) phase. In the design phase, the set of 
historical data is used to develop the PCA model of the 
‘healthy’ pipeline system of the boiler. Data used for model 
development represent the segments of process variables 
mentioned above, collected in the same, sufficiently long 
time period. Data matrix, containing the segment of one 
process variable in a column, is then normalized by 
removing its mean value and dividing by a variance of each 
column. Based on such historical measurements, the 
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principal components model is then established and the 
principal components contribution rate is calculated [47]. 
The dimensionality of the principal component subspace (to 
be used in further steps of the algorithm) should be chosen 
according to the guidelines given in literature [33, 36]. In our 
case the three-dimensional principal component subspace 
has turned out to be the best one, because depending on 
the number of variables selected from the set of 12 original 
process variables, three principal components give the 
accumulate contribution rate crm (expressed by (6)) 
between 88% and 96%. 

The points used to develop the PCA model are then 
mapped on the coordinate system created from three 
principal components of the largest contribution. The region 
containing 95% of such mapped points may be bounded by 
an ellipsoid, which is considered as the confidence region. 
As the mean value was removed from data before PCA 
decomposition, the center of the ellipsoid is located in the 
center of the coordinate system. The size of the ellipsoid 
represents the covariance of data used for model 
development and mapped to the principal components 
space. The data points located inside the confidence 
ellipsoid represent the ‘healthy’ operating conditions of the 
boiler pipeline system. During the monitoring phase, the 
newly acquired data point, which represents current values 
of the process variables, is normalized and mapped to the 
PC coordinate system. The location of the data point 
outside the confidence ellipsoid is the indicator of possible 
fault appearing in the pipeline system. Such a finding is also 
supported by the results of the comparison of the values of 
Hotelling’s T2 and SPE (Q) statistics (equations (5) and (7)) 
with their thresholds given by (6) and (8), respectively. The 
block diagram  of  the  detection scheme is presented in 
Fig. 3. 

 
Fig.3. Block diagram of the PCA-based pipeline leak detection. In 
the numerical experiments such a sequence was repeated every 
three days, what provided adaptation of the PCA model of a 
‘healthy’ system. The model was built from data contained in a 
sliding time window and used to establish the confidence region, 
employed (together with T2 and Q statistics) for making a decision 
about leakage detection 

 

As it was mentioned above, the PCA method has been 
successfully used as the alternative of model-based or AI-

based approaches to fault detection. However the 
assessment of the current condition of the pipeline system 
to the ‘healthy’ or ‘faulty’ category is actually a complicated 
problem because of technical complexity of the plant and 
substantial and frequent changes of the boiler operating 
point. Analysis of data acquired from the examined boiler 
and results of preliminary simulations revealed the following 
problems, which proper solution turned out to be crucial for 
the successful application of the PCA method to leakage 
detection: 
 The size and location of the time window used for 
building the PCA model of a ‘healthy’ system (i.e. how many 
historical samples should be used to develop the model and 
from which historical period?). 
 Adaptation of the PCA model (i.e. should the model 
be adapted to possible changes of boiler operating 
conditions and how often such a procedure should be 
repeated?). 
 Sensitivity of the PCA model to leakages in the 
whole pipeline system (i.e. is the model able to detect a 
leak in any part of the pipeline?). 

The above problems cannot be solved theoretically; any 
practical solutions can be based only on general hints 
coming from heuristic approaches reported in literature and 
experimental work on tuning the algorithm to a specific 
case. Proper choice of the length of a data segment to be 
used for building the PCA model of a ‘healthy’ system is 
very important for the ability of a presented method to 
detect leakages. As it has been mentioned above, the plant 
operates in variable conditions, so the segments of data 
collected in a long time period do not fulfill the stationarity 
assumption. From the other hand too short data segments 
(e.g. corresponding to the 24-hours period) yielded the 
models with poor performance. So, it turned out from our 
numerical experiments that the best accuracy and 
sensitivity of the proposed detection scheme to detect a 
growing leak has been obtained when the PCA model of a 
‘healthy’ system was developed using data collected in the 
period of 2-4 days. Such a PCA model fits to changeable 
operating condition in a limited time period, so it must be 
adapted similarly to the approach described in [35]. In our 
problem the best results were obtained when the PCA 
model of the ‘healthy’ system was periodically recomputed 
once a day, using data segments of the constant length, 
contained in a sliding time window. In the other words, for 
each process variable the ‘tail’ of the oldest historical daily 
recordings was removed from the data segment and the 
measurements from the new day were added at the ‘head’ 
of the segment. 

We tested the proposed approach on 25 cases of 
leakages, which caused unscheduled shutdowns of the 
boiler in the years 2010-2015. As it can be seen from Table 
1, there were 56 such cases in the above period, however 
not all of them could be used in our experiments. Except of 
the shutdowns caused by leakages, the boiler was also shut 
down due to other reasons mentioned in Table 1 and 
sometimes the intentional shutdowns were taking place, 
e.g. according to the heat production plan, plant repair 
schedule, etc. So, in many cases the period of boiler 
operation between the shutdowns was too short for building 
the PCA model and testing its ability to predict the leakage 
in a desired time horizon, assumed in our experimental 
setup. Table 2 shows the overall results of tests performed 
on 25 cases considered in numerical experiments, i.e. the 
number of days before the shutdown when our PCA-based 
approach gave undoubted indication of forthcoming failure. 

In the experiments, which results are shown in Table 2 
and in some details discussed below, we applied the 
following rules: 
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 The PCA model of a ‘healthy’ system was built using 
data segments of 12 process variables, recorded in 
the 3-days period. 

 The model was then applied to process data 
recorded in the next 5 days after the moment of 
model building – the consecutive data points 
displayed on the confidence ellipsoid (as a 
background) in the PC space formed a specific ‘fault 
trajectory’. 

 The procedure described in two above rules was 
repeated for data with the time shift of 24 hours (the 
time horizon was shortened adequately, while 
approaching the shutdown). 

 The moment when the fault trajectory was 
permanently leaving the confidence ellipsoid was 
regarded as the indication of the leakage 
appearance. 

The last rule of making decision about the most likely 
appearance of a leakage needs a comment. It is quite 
obvious that due to process disturbances, transient states 
caused by changes of operating conditions of a boiler, etc., 
some isolated data points (or small groups of subsequent 
data points) corresponding to the ‘healthy’ state may be 
located outside the confidence ellipsoid. It is also quite likely 
that the opposite situations may appear when the fault 
trajectory, especially at the early stages of leakage 
development, may temporary enter the confidence region. 
So we considered that the one-hour segment of the fault 
trajectory lies outside the confidence region when not more 
than 5 data points (of 30 points analyzed each hour) and 
not more than 3 consecutive points are located within the 
ellipsoid. Such an assumption is not crucial because due to 
continuous development of the leakage the trajectory was 
always driven away from the confidence region (and finally 
there were no points inside the ellipsoid), but it was helpful 
to establish unambiguously the moment of the leak 
detection, as it is presented in Table 2. 

 

Table 2. Performance of the PCA model in detection of boiler 
leakages 
 

Time horizon of 
leakage prediction 
(number of days, n) 

 1 (1; 2] (2; 3] (3, 4] (4; 5] 

Number of cases, for 
which the leakage 
was predicted n 
days before its 
detection by the 
personnel 

2 3 5 8 7 

 

As it can be seen from Table 2, only two of 25 leakages 
(i.e. 8%) were detected by our method not earlier than 24 
hours before the shutdown. It can be also noticed that the 
number of failures detected 3-5 days before the shutdown 
amounts to 15 (60% of all cases), what allows to apply the 
more restrictive interpretation of the results. The PCA model 
of the ‘healthy’ system, created at the beginning of the n-th 
day, used data from days: n-1, …, n-p – the results shown 
in Table 2 were obtained for the value p = 3. However at the 
current time moment we are not sure whether the process 
is still running without any fault, as the measurements of the 
process variables are the only source of information about 
current conditions of the plant. We can increase the 
reliability that data used for model building represent the 
‘healthy’ system if we apply the time shift of the sliding 
window which contain historical data used for development 
of the PCA model, i.e. the model is built based on the data 
from days: n-1-d, …, n-p-d. Of course we do not know the 
dynamics of crack development because the fault may rise 
slower or faster, depending on its location and the boiler 

operating conditions, but we may assume that if there are 
no visible symptoms of the leak at the moment, so d days 
ago (and earlier) the pipeline system was also ‘healthy’. 
Taking into account these considerations and assuming the 
value d = 2, we can notice that in 60% of the analyzed 
cases the proposed approach can detect the leakage at 
least one day before the shutdown was necessary. And 
(applying the two-day time shift in data used for model 
building) only in 17% of cases the PCA method did not 
detect the leakages sufficiently early to provide the 
personnel enough time for appropriate actions before the 
shutdown. 

The last problem mentioned above, i.e. the ability of the 
PCA model to detect leakages in any part of the pipeline 
system has not been solved in a satisfactory way. The 
length of the pipeline section of a boiler amounts to several 
dozen of meters and the measurement devices are located 
only in several points, neighboring to relatively small areas 
of the pipes. So if the crack appears in a certain location of 
a bended pipe, it is likely that it causes different changes in 
the course of the process variables than the leak arising in 
another point. Unfortunately we had not enough data and 
sometimes incomplete reports from pipeline inspection after 
the boiler shutdown to perform systematic analysis of the 
problem and make statistical conclusions. Although, in our 
opinion, it is impossible to work out any rules which could 
associate the fault trajectory in the PC space with the 
location of the pipe crack, the solution of the problem of 
more precise localization of the leak seems to be the 
promising direction of our future work. 

 
Two case studies 

Data recordings from the period 2010-2015 were used 
in numerical experiments, what allowed us to check the 
performance of the PCA-based approach to leakage 
detection for different physical characteristics of the plant. In 
2011 the boiler was substantially renovated, due to 
creeping degradation of pipelines and an increasing number 
of leaks, some sections of pipelines were replaced by the 
new ones, also some pieces of new equipment were 
installed. Replacement of the pipeline sections and some 
other repairs of the boiler noticeably changed static and 
dynamic properties of the plant, so we can regard that the 
presented approach was tested on a very wide range of 
operating conditions. As a result of the renovation the 
number of tube cracks decreased in 2012, however in 2013 
some leaks occurred in the places where the new pipes 
were joined to the old sections of pipelines. To illustrate the 
ability of the PCA model to detect leakages in the pipeline 
system of the boiler we have chosen two cases of faults, 
which required unplanned shutdowns of the boiler – the first 
one before the renovation (from January 2010) and the 
second one from the end of 2013 and beginning of 2014. 

In both cases the process was shut down shortly after 
the personnel undoubtedly determined the cracks, mostly 
on the basis of acoustic and visual examination. During the 
inspection of the pipeline system after shutdown the single 
or multiple cracks of the pipes have been confirmed. The 
first symptoms of irregularities in the measured process 
variables could be observed by the operator not more than 
a day before auditory confirmation of the fault, however as 
we are showing below, the leakages could be clearly 
detected earlier using our approach. In both experiments 
presented below the full set of 12 process variables 
(mentioned above) has been used to prepare the PCA 
model of the ‘healthy’ system, with the principal component 
space reduced to three the most significant ones. No prior 
knowledge from the operator, whether the data represent 
the leak and when the leak has taken place, and whether 
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the plant should be shut down as a result of a leak, was 
used in the experiments. The detection scheme followed 
the flowchart presented in Fig. 3 – in both cases discussed 
below we used the ‘healthy’ models constructed from three 
days recordings and testing periods equal to five days. The 
figures in the next subsections show the evolution of the 
‘fault trajectory’ in the principal component space, until it 
goes outside the confidence ellipsoid at least five days 
before the boiler shutdown. Also the Hotelling’s T2 and SPE 
(Q) statistics are presented to confirm the symptoms of pipe 
leaks detected by the algorithm. 

 
Case 1 

The first ambiguous symptoms of the arising failure 
were noticed during a routine inspection at about 11:30 
o’clock on 22nd January 2010, as a very loud noise coming 
from the area of the steam superheater on the right side of 
the boiler. There were no clear symptoms of escalating fault 
which could be noticed by the process operator, e.g. as 
substantial changes of characteristics of process variables. 
The boiler was shut down very quickly after that moment, 
i.e. at 14:07 on 22nd January 2010, immediately after 
setting in motion a reserve boiler. The inspection of the 
superheater area on the right side of the boiler, performed 
several hours later, has shown the cracks of two 
neighboring pipeline sections, as presented in Fig. 4. 

 

 
Fig.4. Cracked pipes, damaged on 22nd January 2010. The photo 
shows two neighboring pipes, which were damaged during that 
failure. The cracks caused very loud noise in the combustion 
chamber, what allowed the personnel to detect the fault during 
routine inspection 

 

The ability of the PCA-based approach to detect the 
leakage at its early stage can be derived from the analysis 
of the evolution of ‘fault trajectory’ presented in Fig. 5a)-c). 
In all figures the green dotted lines represent the trajectory 
formed by data points used to build the model of a ‘healthy’ 
system (recorded within three days), while the solid dark 
grey lines represent the ‘fault trajectory’ created by data 
points from the next five days. The points located inside the 
confidence ellipsoid are marked with circles, while the 
points outside the ellipsoid are marked with crosses (‘x’ or 
‘+’ symbols). The arrows show the direction of the time flow; 
the straight-line segments connect the data points mapped 
with the time distance of four hours. 

As it was mentioned in the previous section, the PCA 
models of a ‘healthy system’ were built from data sets 
representing 12 process variables measured in the period 
of the preceding three days.  

 

 
Fig.5. Fault trajectories in the 3-dimensional Principal Components 
space, shown in the two-week period before the shutdown on 22nd 
January 2010. The graphs show the location of data used for model 
building (green dashed lines) and measurement data collected in 
the next time period (black solid lines). The distance in time 
between the consecutive points is equal to four hours. The a), b) 
and c) subplots show three ‘snapshots’ corresponding to the 
evolution of the pipeline state, taken every three days in the time 
period preceding the shutdown. Data points located within the 
confidence ellipsoid are marked with circles, while the points lying 
outside the confidence region are marked with the (+) or (x) 
characters. In all cases a data segment from three days was used 
for building the PCA model of a ‘healthy’ system, which was then 
used to test data from the next five days. In the a) subplot the 3-day 
period started 14 days before the shutdown, while the next five 
days (starting from the 11th day before the shutdown) created the 
trajectory of fault evolution. In the b) subplot the 3-day period used 
for PCA model building started 11 days before the shutdown, and 
in the c) subplot it started 8 days before the shutdown. The 5-day 
period for testing the trajectory of fault evolution started from the 
8th day before the shutdown in the b) subplot, and from the 5th day 
before the shutdown in the c) subplot 

 

The reduced Principal Component space was created 
by three components of the highest magnitude and the 
analyzed ‘fault trajectory’ contains data from five days 
following the data segment used for model building. So, Fig. 
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5a) shows the confidence ellipsoid corresponding to the 
PCA model created from data collected in the 14th, 13th 
and 12th days before the shutdown. As it can be seen 
almost all the data used for PCA model building (except of 
one point) are located within the confidence ellipsoid; also 
the location of data points from the next five days does not 
fulfill our criteria for leakage detection, described in the 
previous section. 

Similar observations may be made from the analysis of 
trajectories presented in Fig. 5b), which shows the 
confidence ellipsoid derived from the PCA model based on 
data from 11th, 10th and 9th days before the shutdown. 
Both the ‘model trajectory’ and the ‘fault trajectory’ are 
placed inside the confidence region, except of a very small 
number of isolated points. So, it may be concluded that the 
model created from data taken about 10 days before the 
shutdown did not give any warnings, analyzing data up to 
three days before the shutdown. The only symptom of 
presumable changes of the condition of the pipeline system 
is the small change of the size and position of the 
confidence ellipsoid; however it may be caused by the 
alterations of the plant operating point. 

 

 
Fig.6. T2 and Q statistics for the last eight days before the 
shutdown – the statistics correspond to the data set presented in 
Fig. 5 c). The green lines represent the statistics for data used for 
PCA model building, while the blue lines represent data collected in 
the last 5-day period just before the shutdown. The dotted red lines 
mark the threshold values, computed according the formula (6) for 
the T2 statistic and the formula (8) for the Q statistic 

 
Fig. 5c) shows the confidence ellipsoid corresponding to 

the PCA model created from data collected in the 8th, 7th 
and 6th days before the shutdown and the ‘fault trajectory’ 
obtained from data recorded in the next five days, until the 
shutdown. The picture shows substantially different 
behavior of the ‘fault trajectory’, which is only partially 

located within the confidence region during the fifth day 
before the shutdown, but after that permanently leaves the 
confidence ellipsoid. Also the confidence ellipsoid changes 
its size and location comparing to previous ones, which 
correspond to the ‘healthy’ pipeline system. It can be 
considered that the PCA-based approach generated the 
clear warning about the developing leakage at least 100 
hours (more than 4 days) before the moment of the 
emergency shutdown. Even if we choose the more 
restrictive interpretation (presented in the previous section) 
with the two-day time shift of selection data to create the 
PCA model, in this case the method was able to detect the 
leakage more than two days before the shutdown. 

To confirm the conclusions made from the analysis of 
the location of the ‘fault trajectory’ in relation to the 
confidence ellipsoid, we also checked the Hotelling’s T2 and 
the Q statistics. The values of both statistics in the last eight 
days before the shutdown (corresponding to Fig. 5c)) are 
presented in Fig. 6 a) and b). The first segments of both 
statistics (depicted in green color) were computed for data 
used to build the PCA model. The last segments (depicted 
in blue) show the T2 and the Q values for the data from the 
last five days directly preceding the shutdown. The 
thresholds (dashed red lines) indicating the faulty conditions 
were computed with the use of equations (6) and (8), 
respectively. Although we can observe qualitative changes 
of both statistics in the last five days before the shutdown 
(comparing to the three-day period representing the 
‘healthy’ conditions), but clear symptoms of fault may be 
derived from these statistics only three days before the 
shutdown. So, the analysis of the ‘fault trajectory’ in the PC 
space seems to be the more sensitive tool for fault 
detection. 
Case 2 

The first symptoms of leakage were noticed by the 
process operator at about 1:30 o’clock in the night on 13th 
January 2014 as small disturbances of process variables 
measured by the control equipment. Then the personnel 
reports from the routine round confirmed fast increase of 
the leakage, but the boiler was kept working until 9:46 on 
13th January 2014, when the substitute boiler was started. 
The inspection of the lower area of the collector chamber, 
performed during the boiler repair, revealed the crack 
presented in Fig. 7. 

 
Fig.7. The photograph of the damage, which caused the shutdown 
of the boiler on 13th January 2014. The leakage occurred in the 
lower area of the collector chamber; the crack was revealed by the 
personnel during the routine inspection 
 

Fig. 8a)-c) demonstrate the process of fault 
development in the PC space, using the same presentation 
manner as in the first case discussed above (see Fig. 5a)-
c)). In the first period (Fig. 8a)) more or less all the ‘fault 
trajectory’ is located inside the confidence ellipsoid. In Fig. 
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8b) representing the period between the 8th and the 3th day 
before the shutdown, the ‘fault trajectory’ leaves the 
confidence region in the middle of the last day of testing the 
PCA-based detection method. It may be regarded as the 
first symptom of developing the pipe crack, however it 
should be confirmed in the next test, after adaptation of the 
PCA model. In the last term, presented in Fig. 8c), the ‘fault 
trajectory’ is located outside the confidence region at the 
beginning of the five-day period, thereafter in the fourth day 
before the shutdown the trajectory goes into the ellipsoid 
and then, approximately 85 hours (about 3.5 days) before 
the shutdown, permanently leaves the confidence region. 
Even if we consider the interpretation of the fault detection 
moment assuming the two-day time delay of selection data 
to create the PCA model, in this case the method was able 
to detect the leakage about 1.5 days before the shutdown. 

 
Fig.8. Fault trajectories in the 3-dimensional Principal Components 
space, shown in the two-week period before the shutdown on 13th 
January 2014. Detail description of the plots is the same as for 
those, presented in Fig. 5 

 

The three pictures representing the condition of the 
pipeline system significantly differ: there are only slight 
changes of the shape and the size of the confidence 
ellipsoid in the first two of them (probably due to changing 
operating conditions of a boiler) and significant changes of 
the confidence region and the shape of the ‘fault trajectory’ 
in the third picture, what gives a clear warning about the 
failure. The indication that the boiler works in faulty 

conditions may be confirmed by the analysis of the 
Hotelling’s T2 statistics in the last five-day period before the 
shutdown, presented in Fig. 9. In this experiment the Q 
statistics turned out to be visibly less sensitive to the leak 
development, as its value exceeds the threshold only in a 
small part of the last five days of the observation. 

 
Fig.9. T2 and Q statistics for the last eight days before the 
shutdown – the statistics correspond to the data set presented in 
Fig. 8 c). Detail description of the graphs is the same as for those, 
presented in Fig. 6 

 
Conclusions 

The studies presented in this paper confirmed that the 
PCA method with proposed improvements is a useful tool 
for early detection of a specific class of faults, i.e. the 
leakages in the pipeline system of a steam boiler. The 
numerical experiments reported in the paper have been 
performed using real data obtained from an industrial plant. 
It should be emphasized that the presented problem has 
some specific characteristics, which make it complicated 
and impose some difficulties or even restrictions on the 
application of other fault detection algorithms: 
 The moment when the leak begins is unknown and 
impossible to be established precisely (or sometimes even 
approximately) by any fault detection technique. 
 The dynamics of the leak growing is unknown, leak 
development changes in time and depends on many factors 
(e.g. operating conditions, location of the pipe cracks, 
material properties, etc.). 
 The possibilities to develop and identify the process 
model, adequate to be used for detection of leakages 
(which occur in a wide number of locations) in the case of 
the plant considered in the paper are very limited, 
regardless of the reported in literature attempts to utilize 
simplified (e.g. linearized) models for this purpose. 
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 The operating conditions of a plant (resulting from 
energy demand) can change substantially in a relatively 
short period, what is a real challenge for the fault detection 
methods which assume steady-state conditions necessary 
for e.g. linearization of plant characteristics. 

That is why we applied the completely data-driven 
approach and examined some improvements of the 
classical usage of the PCA scheme. The approach 
discussed in the paper confirmed its ability to detect real-life 
pipeline leakages and in our opinion replaces the necessity 
of the construction and identification of the process model, 
what is always a time consuming and expensive task. The 
decision making process was based on the construction of 
the ‘confidence space’ (which represents the feasible area 
occupied by the values of process variables for the ‘healthy’ 
system in the PC coordinates) and continuous monitoring of 
the ‘fault trajectory’ which represents the transition of the 
process operating point in PC coordinates. The PC 
coordinates represent the main features extracted from a 
set of process variables used by the plant control system. 
The fault detection is supported by the analysis of the T2 
and Q statistics, commonly used in statistical process 
monitoring problems. 

As the changing conditions of the plant operation 
(yielding nonstationarity of the signals) cause the serious 
obstacle in the successful use of the PCA method [2], we 
proposed periodical, with a one-day period, adaptation of 
the PCA model, what substantially improved the 
performance of the method. We also demonstrated that the 
current PCA model of the ‘healthy’ system should be 
constructed not from the newly recorded data, but from the 
data segment shifted some days into the past, what 
increases the chance that the modeled system was working 
in the unfaulty conditions. Such time shifts, as well as the 
length of the data segment, which are the most suitable in 
the case of leak detection, were established experimentally 
in our studies. 

The analysis of a representative number of cases 
observed during over five years of the plant use confirmed 
that method described in the paper can effectively extract 
fault information and reduce the effect of noises and 
disturbances on leak detection. In most of the analyzed 
historical cases the system was able to foresee the leaks 
earlier than the operator, typically 3-5 days before the 
shutdown. We also tried to extend that forecasting horizon, 
checking the ability of the PCA model to detect the leak 
symptoms 7 or more days before the shutdown, however 
the sensitivity to the early faults noticeably decreased, 
comparing to the results discussed above. Nevertheless, 
the implementation of our approach may be the important 
element of an on-line system, which would lead to 
significant improvement in safety and maintenance of 
industrial boilers in Elektrocieplownia Bialystok. The early 
warning can be given for plant operators, based on 
periodically updated PCA model of the ‘healthy’ system and 
the analysis of the fault trajectory, together with T2 and Q 
statistics. 
 
The work was supported by the Dean’s Project No. 
S/WE/1/2016, Faculty of Electrical Engineering, Department 
of Automatic Control and Electronics, Bialystok University of 
Technology. 
 
Authors: Miroslaw Swiercz, PhD, DSc (Eng), Bialystok University 
of Technology, Faculty of Electrical Engineering, ul. Wiejska 45D, 
15-351 Bialystok, Poland, E-mail: m.swiercz@pb.edu.pl; Halina 
Mroczkowska, PhD (Eng), ENEA Cieplo Sp. z o.o. w Bialymstoku, 
ul. Warszawska 27, 15-062 Bialystok, Poland, E-mail: 
halina.mroczkowska@enea.pl. 
 

REFERENCES 
[1 ]  Zhang H., Xu L., Diagnostic System for Current-Carrying 

Fault: Modeling, Precaution, and Prediction, IEEE Trans. 
Power Delivery, 29 (2014), No. 3, 1318-1325, doi: 
10.1109/TPWRD.2013.2295005 

[2] Sun X., Chen T., Marquez H.J., Efficient model-based leak 
detection in boiler steam-water systems, Computers and 
Chemical Engineering, 26 (2002), No. 11, 1643-1647 

[3] Sun X., Chen T., Marquez H.J., Boiler Leak Detection Using 
a System Identification Technique, Industrial & Engineering 
Chemistry Research, 41 (2002), No. 22, 5447-5454 

[4] Jankowska A., Approach to Early Boiler Tube Leak Detection 
with Artificial Neural Networks. In: Jablonski R., Turkowski 
M., Szewczyk R. (eds.), Recent Advances in Mechatronics, 
Springer-Verlag, Berlin Heidelberg, 2007, 57-61 

[5] Sato R., Yasukouchi K., Yamamoto T., Device for early 
detection of rupture of the pressure part of a boiler, United 
States Patent 3831561, August 27, 1974 

[6] Jung G.J., Cho Y.S., Kim Y.C., Baek S.H., Sung J.H., 
Frequency Shifting Signal Detection and Analysis of Boiler 
Tube Leaks, 18th International Conference on Composite 
Materials, 21-26 August 2011, ICC Jeju, Korea 

[7] Studdard B., Arrington P., Rechner M., Operating Experience 
Using Acoustic Leak Detection at Gaston Station, Technical 
Paper BR-1492, Babcock & Wilcox, a McDermott company, 
presented to: Power-Gen '92, 17-19 November 1992, 
Orlando, USA 

[8] Jiang G., Wang L., Tian J., and Pan J., Research on acoustic 
source positioning method for boilers tube leakage, 
Proceedings of 20th International Congress on Acoustics, 
ICA 2010, 23-27 August 2010, Sydney, Australia, PACS: 
43.20.-f, 1-6 

[9] An L., Wang P., Sarti A., Antonacci F., Shi J., Hyperbolic 
boiler tube leak location based on quaternary acoustic array, 
Applied Thermal Engineering, vol. 31 (2011), No. 16, 3428-
3436 

[10] Kim D.-H., Yang B.-S., Lee S.-B., 3D boiler tube leak 
detection technique using acoustic emission signals for 
power plant structure health monitoring, Prognostics and 
System Health Management Conference (PHM-Shenzhen), 
24-25 May 2011, 1-7 

[11] Jones C.S., Koch D.B., Morris K.W., Classical and parametric 
spectral analysis instrument using a visual programming 
language, 9th IEEE Instrumentation and Measurement 
Technology Conference, IMTC '92, 12-14 May 1992, 533-538 

[12] Jiang G., Wang L., Research on the Detection and Location 
of Sound Emission Caused by Tube Leakage in Boilers, 2012 
Asia-Pacific Power and Energy Engineering Conference 
(APPEEC), 27-29 March 2012, Shanghai, 1-4, doi: 
10.1109/APPEEC.2012.6307413 

[13] Burgmayer P.R., Durham V.E., Effective Recovery Boiler 
Leak Detection with Mass Balance Methods, Proceedings of 
TAPPI Engineering Conference, Atlanta (USA), 17–21 
September 2000, 1011-1025 

[14] Pertew A.M., Sun X., Kent Gooden R., Marquez H.J., A new 
blowdown compensation scheme for boiler leak detection, 
2008 American Control Conference, Seattle, USA, 11-13 
June 2008, 4309-4311 

[15] Lang F.D., Rodgers D.A.T., Mayer L.E., Detection of Tube 
Leaks and Their Location Using Input/Loss Methods, 
Proceedings of the 2004 International Joint Power 
Generation Conference (combined Electric Power 2004 
Conference), IJPGC2004, Baltimore, USA, 30 March – 1 
April 2004 

[16] de Mello F.P., Boiler models for system dynamic 
performance studies, IEEE Trans. Power Systems, 6 (1991), 
No. 1, 66-74 

[17] Colonna P., van Putten H., Dynamic modeling of steam 
power cycles. Part I – Modeling paradigm and validation, 
Applied Thermal Engineering, 27 (2007), No. 2-3, 467-480 

[18] Liu C., Liu J., Niu Y., Jin X., Nonlinear modeling and 
simulation for large scale coal-fired power unit, 30th Annual 
Conference of the IEEE Industrial Society 2004, 2-6 
November 2004, Busan, Korea, vol. 3, 1983-1986 

[19] van Putten H., Colonna P., Dynamic modeling of steam 
power cycles. Part II – Simulation of a small simple Rankine 
cycle system, Applied Thermal Engineering, 27 (2007), No. 
14-15, 2566-2582 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 10/2019                                                                                   203 

[20] Sun X., Chen T., Marquez H.J., Detecting leaks and sensor 
biases by recursive identification with forgetting factors, 
Proceedings of the 40th IEEE Conference on Decision and 
Control 2001, Orlando, USA, December 2001, vol. 4, 3716-
3721 

[21] Castillo I., Edgar T.F. and Fernández B.R., Robust model-
based fault detection and isolation for nonlinear processes 
using sliding modes, International Journal of Robust and 
Nonlinear Control, 22 (2012), No. 1, 89-104 

[22] Marquez H.J., Riaz M., Robust state observer design with 
application to an industrial boiler system, Control Engineering 
Practice, 13 (2005), No. 6, 713-728 

[23] Lo K.L., Rathamarit Y., State estimation of a boiler using the 
unscented Kalman filter, IET Generation, Transmission & 
Distribution, 2 (2008), No. 6, 917-931 

[24] Nazaruddin Y.Y., Nur Aziz A., Sudibjo W., Improving the 
Performance of Industrial Boiler Using Artificial Neural 
Network Modeling and Advanced Combustion Control, 
International Conference on Control, Automation and 
Systems, ICCAS 2008, 14-17 October 2008, Seoul, Korea, 
1921-1926 

[25] Yu D.L., Chang T.K., Yu D.W., Adaptive neural model-based 
fault tolerant control for multi-variable processes, Engineering 
Applications of Artificial Intelligence, 18 (2005), No. 4, 393-
411 

[26] Rostek K., Morytko L., Jankowska A., Early detection and 
prediction of leaks in fluidized-bed boilers using artificial 
neural networks, Energy, 89 (2015), September 2015, 914-
923, doi: 10.1016/j.energy.2015.06.042 

[27] Dong X.-C., Wang H.-B., Zhao X.-X., Model Reference 
Neural Network Control for Boiler Combustion System, 
Proceedings of the Fourth International Conference on 
Machine Learning and Cybernetics, Guangzhou, China, 18-
21 August 2005, vol. 8, 4694-4698 

[28] Ghaffari A., Moosavian S.A.A., and Chaibakhsh A., 
Experimental Fuzzy Modeling and Control of a Once-through 
Boiler, Proceedings of the IEEE international Conference on 
Mechatronic & Automation, Niagara Falls, Canada, July 
2005, vol. 3, 1340-1345 

[29] Alouani A.T., Chang S.-Y.P., Artificial Neural Network and 
Fuzzy Logic Based Boiler Tube Leak Detection Systems, 
USA Patent No: 6,192,352 B1, Feb 20, 2001. 

[30] Ghaffari A., Chaibakhsh A., Lucas C., Soft computing 
approach for modeling power plant with a once-through 
boiler, Engineering Applications of Artificial Intelligence, 20 
(2007), No. 6, 809-819 

[31] Arroyo-Figueroa G., Sucar L.E., Vilaavicencio A., 
Probabilistic temporal reasoning and its application to fossil 
power plant operation, Expert Systems with Applications, 15 
(1998), No. 3-4, 317-324 

[32] Ge Z., Song Z., Gao F., Review of Recent Research on Data-
Based Process Monitoring, Industrial & Engineering 
Chemistry Research, 52 (2013), No. 10, 3543-3562 

[33] Jolliffe I.T., Principal Component Analysis, Second Edition, 
Springer series in statistics, Springer, New York Berlin 
Heidelberg, 2002 

[34] Ge Z., Song Z., Multivariate Statistical Process Control: 
Process Monitoring Methods and Applications, Advances in 
Industrial Control, Springer, 2013th Edition, London, 2013 

[35] Deng P.C., Gui W.H., Xie, Y.F., Latent space transformation 
based on principal component analysis for adaptive fault 
detection, IET Control Theory & Applications, 4 (2010), No. 
11, 2527-2538 

[36] Ma Y.-G., Zhang J., Fault Diagnosis based on PCA and D-S 
Evidence Theory, Asia-Pacific Power and Energy 
Engineering Conference, APPEEC 2009, 28-31 March 2009, 
Wuhan, China, 1-5 

[37] Lau C.K., Ghosh K., Hussain M.A., Che Hassan C.R., Fault 
diagnosis of Tennessee Eastman process with multi-scale 
PCA and ANFIS, Chemometrics and Intelligent Laboratory 
Systems, 120 (2013), 1-14 

[38] Ghamari A., Khaloozadeh H., Ashraf-Modarres A., Ghamari 
H., Application of Quantitative Data-Based Fault Detection 
Methods on a Drum-Type Boiler, Proceedings of the 3rd 
Conference on Thermal Power Plants (CTPP), 2011, 1-6 

[39] Jaffel I., Taouali O., Elaissi I., Messaoud H., Comparative 
study of PCA approaches for fault detection: Application to a 
chemical reactor, IEEE - 2013 International Conference on 
Control, Decision and Information Technologies CoDIT'13, 6-
8 May 2013, Hammamet, Tunisia, 57-62 

[40] Ding S., Zhang P., Ding E., Yin S., Naik A., Deng P., Gui W., 
On the Application of PCA Technique to Fault Diagnosis, 
Tsinghua Science and Technology, 15 (2010), No. 2, 138-
144 

[41] Tamura M., Tsujita S., A study on the number of principal 
components and sensitivity of fault detection using PCA, 
Computers and Chemical Engineering, 31 (2007), No. 9, 
1035-1046 

[42] Huang Y., Gertler J., McAvoy T.J., Sensor and actuator fault 
isolation by structured partial PCA with nonlinear extensions, 
Journal of Process Control, 10 (2000), No. 5, 459-469 

[43] Yoo C.K., Lee J.-M., Vanrolleghem P.A., Lee I.-B., On-line 
monitoring of batch processes using multiway independent 
component analysis, Chemometrics and Intelligent 
Laboratory Systems, 71 (2004), No. 2, 151-163 

[44] Cheng H., Nikus M., Jämsä-Jounela S.-L., Evaluation of PCA 
methods with improved fault isolation capabilities on a paper 
machine simulator, Chemometrics and Intelligent Laboratory 
Systems, 92 (2008), No. 2, 186-199 

[45] Yu J., Yoo J., Jang J., Park J.H., Kim S., A novel plugged 
tube detection and identification approach for final super 
heater in thermal power plant using principal component 
analysis. Energy, vol. 26 (2017), 1 May 2017, 404-418 

[46] Niu Z., Liu J.-Z., Niu Y.-G., Pan Y.-S, A Reformative PCA-
based Fault Detection Method Suitable for Power Plant 
Process, Proceedings of the Fourth International Conference 
on Machine Learning and Cybernetics, Guangzhou, China, 
18-21 August 2005, 2133-2138 

[47] Tong P., An L.-S., Zhang J., Liu Y.-T., Research on Fault 
Diagnosis Method of Principal Components Analysis and D-S 
Evidence Theory, Chinese Control and Decision Conference, 
CCDC '09, 2009, 1601-1605 

[48] Sun X., Marquez H.J., Chen T., Riaz M., An improved PCA 
method with application to boiler leak detection, ISA 
Transactions, 44 (2005), 379–397 

[49] Pawlik M., Strzelczyk F., Elektrownie (Power plants) - in 
Polish, WNT, Warszawa, Poland, 2009 

 
 


