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Abstract. The paper presents the application of the compressive sensing technique to reconstruct a non-stationary signal based on compressed 
samples in the time-frequency domain. A greedy algorithm with different dictionaries to seek sparse atomic decomposition of the signal was applied. 
The results of the simulation confirm that the use of compressive sensing allows reconstruction of the non-stationary signal from a reduced number 
of randomly acquired samples, with slight loss of reconstruction quality. 
 
Streszczenie. Przedstawiono zastosowanie techniki oszczędnego próbkowania do rekonstrukcji sygnału niestacjonarnego na podstawie 
skompresowanych próbek w dziedzinie czas-częstotliwość. Zastosowano nadmiarowy algorytm z różnymi słownikami aby znaleźć rzadką 
reprezentację sygnału. Wyniki symulacji potwierdzają, że zastosowanie oszczędnego próbkowania pozwala na rekonstrukcję sygnału 
niestacjonarnego z małej liczby losowo pobranych próbek, z niewielką utratą jakości rekonstrukcji. (Rzadka reprezentacja sygnału 
niestacjonarnego w technice oszczędnego próbkowania). 
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Introduction 
Compressive sensing (CS) is a technique of measuring 

signals and then reconstructing them with incomplete data 
(in comparison to classical measurement methods) [1, 2, 3]. 
It enables sampling below Nyquist frequency, without (or 
with slight) loss of a reconstructed signal quality. 
Particularly, CS is used in signal processing to obtain and 
recover sparse or compressible signals. Sparsity is the 
inherent property of those signals for which all information, 
contained in the signal, can be represented only by means 
of several significant components, compared to the total 
signal length.  There is a base, in which the signal 
representation has a few components differing from zero. A 
signal can have sparse representation either in the original 
domain or in some transform domains. The time–frequency 
domain provides an ideal base to sparsely represent the 
non-stationary signals for two main reasons [4, 5]. First, it is 
extremely difficult to find a sparse representation of a non-
stationary signal separately in the time domain as well as in 
the frequency domain. The second one is related to the fact 
that recent advances in computational resources enabled 
fast manipulations of large matrices, which are required for 
CS of non-stationary signals in the time–frequency domain.  

Sparse representation originates from atomic 
decomposition, which is used for describing functions in 
mathematics [6]. Atomic decomposition can represent 
arbitrary signals as a superposition of some optimal 
elementary waveforms (atoms) that best match the signal 
major structures, based on a dictionary (a library of atoms). 
The number of atoms used in the signal representation 
determines the level of the sparsity.  

In this paper, the matching pursuit (MP) algorithm is 
applied to seek sparse atomic decomposition. Furthermore, 
two types of dictionaries are used to reconstruct the time-
frequency representations of a signal, namely the Gaussian 
and the chirplet dictionaries. Using only a few samples from 
the time-frequency domain, the non-stationary signals are 
recovered in the time-frequency domain based on the idea 
of the compressive sensing. 

The paper is organized as follows. First section reviews 
the main ideas behind compressive sensing. Next, the 
approach to obtain compressed samples in the time–
frequency domain including compressive sensing of non-
stationary signals using time–frequency dictionaries is 
presented. Then, the exemplary simulation results are 
shown. Concluding remarks are drawn in the last section. 

Review on theory of compressive sensing 
The CS signal processing scheme contains both 

acquisition and reconstruction models (see Fig. 1). 
 

 
 
Fig. 1. The signal processing scheme based on compressive 
sensing: acquisition model (a), reconstruction model (b) [7] 
 
In order for CS to be applicable, it is assumed that the input 

signal  1, ,
T

Nx x x   of length N   can be represented by 

a linear combination of known basis functions [7]: 
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where: Na R  – transform domain coefficients of x , i  – 

the column vector in sparse matrix 
NxNR  . 

 

When the number of non-zero coefficients in x  is K  that 

x  is K - sparse, which means that signal Nx R  can be 
transformed in sparse transform matrix   to K orthogonal 

vectors, where K << N . 
The acquired signal y , containing a set of M  random 

samples ( M << N ) is compressed with following equation 
[7]: 

 

(2)  y x a a          
 

where: MxNR   – a measurement matrix, MxNR  – a 

reconstruction (sensing) matrix. 
 

The measurement matrix should be designed as 
incoherent with the sparsity basis. The generally used 
measurement matrices in CS can be divided into the 
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random measurement matrices, such as the random 
Gaussian matrix and the Bernoulli matrix, and the 
deterministic measurement matrices, such as the Fourier 
matrix, the Hadamard matrix, and the Toeplitz matrix [8]. 

Finally, the reconstruction process model is described 
as follows [7]: 

 

(3) 
1

ˆ arg mina a subject to y a    
 

where: â – the estimate of a , 
1

a  – denotes the 1l – norm 

of a . 
 

The most common used reconstruction algorithms for 
the above sparse signal recovery are the greedy algorithms, 
that solve the reconstruction problem by finding the answer 
iteratively [8]. The widely used algorithm is matching pursuit 
(MP), especially when the signal is highly sparse, then the 
MP procedure has a low implementation cost and high 
speed of recovery [9]. 

 

Time–frequency dictionary and MP algorithm 
The aim of the reconstruction algorithm is to find the 

K non-zero coefficients of a  which subjects to (2), on 
condition that a  is a K – sparse representation of the 
signal. An approximation of a compressively sampled signal 
y  is obtained using a linear expansion of atoms ng  

selected from a complete and redundant time-frequency 
dictionary   as [11]: 
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where: na – a sparse coefficient of the signal in time 

frequency domain. 
 

The dictionary   is the reconstruction matrix expressed as 
follows [12]: 
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and the i-th column of the matrix   is defined by [12]: 
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The Gaussian chirplet atom ng  is a chirp function 

modulated by a Gaussian envelope, expressing with four-
parameter ( , , , )n n n nt    , where ),( nnt  denotes the time-

frequency center of the chirplet, n  is the Gaussian 

envelope’s standard deviation and n  specifies the chirp 

rate. When the chirp rate n is equal to zero, the 

elementary function is taking shape of the Gaussian pulse. 
In practice, the MP, based on the chirplet dictionary, has 
better resolution than the Gaussian pulse [5]. Furthermore, 
the convergence rate of the MP algorithm based on the 
chirplet is faster than one based on the Gaussian dictionary.  

Then, rewrite (2) as follows:  
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Starting with a null initial model, MP algorithm iteratively 
builds up an approximation by adjoining at each stage an 
atom, which best correlates with the current residual signal 

nR y  (see Tab. 1). The procedure is implemented iteratively 

until MR y reaches a predefined threshold or M K . 

Then, the decomposition coefficients can be described by: 
 

(8)  ˆ , , 0,1,..., 1n
na R y g n M    

 

The theorem introduces a necessary condition for 
correct reconstruction regarding the minimum number of 
measurements to be acquired. It can be shown that, under 
the assumption of the restricted isometry property (RIP), the 
number of random samples M  is such that [13]:  
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where:  1
log 24 1 0,28

2
C    . 

 

Table 1. The MP procedure  
 

Initialization 
The residual vector is initialized with 

measurement vector y   
00,i R y y   

 
Atom search 

This step finds a column of reconstruction matrix 
which is maximally correlated with the residual 

vector 
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Update 
sparse 
solution 

The signal  is expressed as a sum of atoms 
that best fit its residues 
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Simulation 
Simulations were carried out using the program, which 

was created based on available programs in the LabVIEW 
environment [14, 15]. It applies a compressive sensing 
algorithm to recover the signals from a set of single random 
(scalar) samples, where the signal is K – sparse in a time – 
frequency domain. Each measurement (sample) represents 
a random projection of the signal onto a single scalar value. 
Taking into consideration the basic compressive sensing 
equation (2), the elements of y  are given by: 
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where: ,i j - the (i, j)th entry of the random binary matrix , 

generated by a pseudorandom pattern of ones and zeros 
that guarantees the Bernoulli distribution. 
 

The following equation defines the probability function of the 
Bernoulli noise [16]: 

(11)  1
,Pr[ ] (1 ) , 0,1z z

i j z p p z       
 

where: p - the ones probability, which means, e.g. if p is 

equal to 0,1, each element of Bernoulli noise has a 10% 
chance of being one and a 90% chance of being zero. 
 

The original signal x consists of two different 
components: one is a sinusoid of high concentration in the 
frequency domain and the other is the sum of three damped 
sinusoids of fine localization in the time. The time-frequency 
(sparse) domain results for different number of atoms, used 
in the signal representation are shown in Fig. 2. 

The percentage of tested signal’s variance (energy) 
explained by the CS reconstruction defines the accuracy of 
the reconstruction. To study the effect of noise background, 



68                                                                             PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 11/2019 

a white Gaussian noise is added at two different signal-to-
noise ratio (S/N), 3 dB and 20 dB. Fig. 3 shows results of 
sparse reconstruction for 70 iterations (measurements) 
under each noise level. The recovered signal explains 
about 70% of the signal total energy in the presence of 
weak noise. In the case of strong noise, the accuracy of CS 
decomposition is significantly decreasing. 

The signal convergence in the sparse domain presents 
Fig. 4. In the weak noise case, the original signal is well 
recovered (see Fig. 4a). In the second case, noise 
contaminates the spectrogram (see Fig. 4b). However, the 
major time-frequency structures still matches with the true 
one shown in Fig. 2. A more accurate reconstruction for a 
noisy signal can be reached by increasing the number of 
random samples (measurements) in the CS acquisition or 
the number of atoms used to expand the signal in the MP 
algorithm. 

 

 
 
Fig. 2. An adaptive spectrogram of a tested signal for sparsity level 
equal to 10 (a), 6 (b)  

 

 
Fig. 3. The waveforms of: tested signal (a), noise convoluted 
sparse signal (b), sparse representation (c) for S/N equals 3 dB. 
The waveforms of: tested signal (d), noise convoluted sparse signal 
(e), sparse representation (f) for S/N equals 20 dB 
 

 
 

Fig. 4. An adaptive spectrogram of a reconstructed signal for S/N 
equal to 3 dB (a) and 20 dB (b) 
 
Concluding remarks 

The paper presents a short review of sparse 
representation of non-stationary signal in time-frequency 
domain. It describes the implementation of CS 
reconstruction by MP algorithm. Although MP is a heuristic 
procedure, it affords comparable and more accurate results 

in recovering the noiseless signal. In the noisy signal 
reconstruction case, MP processing contains errors that 
may be unacceptable. The convergence of the MP 
decomposition is not dependent on the type of atom used. 
The results demonstrate that the reconstruction of a non-
stationary signal can be effectively performed from a small 
set of random measurements. The dimension of the 
measurement matrix affects the accuracy of the 
reconstruction process.  
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