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New definition formulas for apparent power and active current 
of three-phase power system 

 
 

Abstract. A new definition formula for apparent power of the three-phase system is justificated. It is the average geometric value of the currents 
power losses and short circuit power of the voltage source loaded by transmission line resistances. The Buchholz's apparent power formula follows 
from this definition as a special case if both zero sequence components of currents and voltages are nil. Under unbalanced voltage the meaning of 
apparent power in accordance with proposed formula may exceed Buchholz's one more than on 10%. The generalized definition formula for 
introduced by Professor Fryze concept of power system’s active current is grounded. It is part of the short-circuit current that is equal to ratio 
between load power and short-circuit power of the voltage source. In such way specified active current provides up to 15% power losses gain in the 
transmission line compared to the original Fryze’s definition in the presence of voltage zero-sequence component. 
 
Streszczenie. Opracowano nową formułę określającą pozorną moc układu trójfazowego. Jest to średnia wartość geometryczna strat prądu i mocy 
zwarciowej źródła napięcia obciążonego rezystancją kabla. Wzór na pozorną moc Buchholza wynika z tej definicji jako szczególnego przypadku, gdy 
oba składniki zerowej sekwencji prądów i napięć są zerowe. Przy niezrównoważonym napięciu pozorna wartość mocy zgodnie z proponowaną 
formułą może przekroczyć wartość formuły Buchholza o więcej niż 10%. Przedstawiono uogólnioną formułę determinującą koncepcję prądu 
czynnego systemu elektroenergetycznego wprowadzoną przez Profesora Fryzego. Jest to część prądu zwarciowego, równa stosunkowi mocy 
obciążenia i mocy zwarciowej źródła napięcia. W ten sposób określony prąd czynny zapewnia do 15% wzrost strat mocy w linii transmisyjnej w 
porównaniu z pierwotną definicją Fryze'a w obecności składowej zerowej napięcia. Nowa definicja mocy pozornej i prądu czynnego w układzie 
trójfazowym 
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Introduction 
The power theory of electrical systems has been 

evolving continuously for more than a century, beginning 
with the works of Steinmetz [1]. A significant milestone in 
this direction was the introduction by Professor S. Fryze of 
active current concept [2,3]. This concept served as a main 
theoretical basis for constructing active and passive filtering 
devices [4]. With the development of the elemental base of 
power semiconductor devices and signal processors, the 
control strategies of active filters developed in the direction 
of ensuring minimal power losses, unity power factor and 
maximum efficiency [5-9]. These strategies were based on 
new provisions of the theory of power, concerning the 
decomposition of currents and powers with giving physical 
meaning to the individual components. A critical review of 
these theoretical positions, carried out in [5-10] and many 
others, suggests that the main component of the current 
decomposition is the active current in the Fryze form, and 
the sum of the squares of the power components is the 
square of the apparent power using the Buchholz formula 
as product of rms values of line currents and line-to-neutral 
voltages. 

The independence of the Fryze's active current and 
Buchholz's apparent power from the ratio of cable 
resistances is doubtful that it is correct for four-wire systems 
(Fig. 1) with non-zero neutral current. The determination of 
the apparent power of a three-phase power supply system 
considers the limitations at which the active power is 
maximized, as an allowable value of the power losses 
caused by the flow of consumed currents [10]. This value is 
proportional to the square of the rms value of the consumed 
line currents, which appear in the Buchholz apparent power 
formula, only in a three-wire power system with identical 
values of the active resistances of the line wires. Especially 
this difference is manifested in a three-phase four-wire 
power system, where the active resistance of the neutral 
wire differs from the active resistance of each line wire. That 
is why the current multiplier of the formula for the apparent 
power of a three-phase four-wire power supply system 
according to the standards [11, 12] is proportional to the 
power losses, containing different values of these 

resistances. Formulation of the optimal control strategy for 
active filter currents [13] that provides a minimal power 
losses in the non-sinusoidal mode contains both the ratio of 
the cable resistances and the zero-sequence voltage 
component. The need for accounting of power line 
longitudinal and transverse parameters, as well as the 
neutral conductor in the study of the system energy 
characteristics was also noted in [7, 9, 11]. 

The goal of this work is a new justification, refinement 
and generalization of the basic concepts of the power 
theory - active current and apparent power for two types of 
three-phase circuits, both three-wire and four-wire. 

 

Fryze’s active current of three-phase power system and 
Buchholz’s formula of the apparent power  

Let us consider the periodic non-sinusoidal mode of 
currents and voltages of a three-phase power supply 
system with a resistive model (Fig. 1) of the transmission 
line. 

 
Fig. 1. Three-phase power supply system with resistive model of 
the transmission line 

 

In the Fryze’s archive publication [3], the active current 
of a three-phase circuit is defined as a three-coordinate 
vector of time functions 

(1) )()/()( 2 tUPtF ui  , 

where 
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active power; T - the period of three-phase voltages source; 

2 2 2 2
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1
[ ( ) ( ) ( )]
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A B CU u t u t u t dt
T

    - the square of the 

rms value of the voltage vector. 
 Introducing the notation for the scalar product of periodic 
time vectors 
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dttt
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1

iuiu  , 

let us show that the Fryze’s active current (1) has a 
minimum rms value among those currents that are 
characterized by the active power iu P  for a given 
voltage vector. 

For vectors u(t) and i(t), satisfying this restriction, we 
write the inequality Cauchy -Schwartz [14]: 

    iiuuiu  2 , 

from which it follows that 
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In the right-hand side of inequality (2) we have the 
square of the norm of the Fryze’s active current according 
to formula (1): 

(3)                  22 2 2/ /F F P U P U  i i u u  . 

Thus, it follows from (2) and (3) that  
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which was to be proved. 
Equality in the expression, which follows from (2) 

    iiuuiu  max  

sets the maximum value of the left part - the active power at 
the given voltages of the three-phase source and the limits 
for the rms value of the linear currents. Precisely this 
maximum value of active power is adopted as apparent 
power [10]. This implies the Buchholz formula for the 
apparent power of three-phase systems: 

(4)                    maxBS P  u u i i   
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Thus, the Fryze’s active current in the form (1) with the 
given active power and source voltages minimizes the value 
of the current multiplier of the apparent power according to 
the Buchholz formula (4). 

 
The new formula for the apparent power of the three-
phase four-wire power system and the refined value of 
the active current 

We justify the formula for the apparent power for case 
three-phase four-wire power system. The power losses are 
given by 

2 2 2 2
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A B C N NP i t r i t r i t r i t r dt
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where the neutral current can be represented in the form 

.111 );()()()()()(   jijji tttitititi CBAN  

 Considering this, we transform expression for power 
losses to the matrix-vector form as follows: 
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where   RjjIR nrr – a transmission line resistance 

matrix; I –- is an identity matrix of dimension 3 × 3. 

For vectors )(2/1 tuR  and )(2/1 tiR  which satisfy 

constraint P )()( 2/12/1 iRuR   we write down the 

Cauchy-Schwartz inequality: 
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This implies the inequality for the powers 
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and the formula for the apparent power of a four-wire power 
system, obtained by another way in [15]:  
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The apparent power (6) contains a second multiplier in 
the form of precisely the power losses, rather than the 
square rms value of the line currents and is valid for an 
arbitrary relationship between the active resistances of the 
wires. For a three-wire system with IR r  and 

1 1( ) ( )t r t R u u  formula (6) transforms into the Buchholz's 

formula of apparent power (4). Similarly, these formulas are 
equivalent in the absence of a zero-sequence component in 

the voltage vector, when 0)( tT uj . It was shown in [16] 

that apparent power formula (6) under the certain condition 
is fully equivalent to the standardized one [11] and remove 
the uncertainty factor in that IEEE standard. Also, as was 
shown in [17], it is fully consistent with the approach of the 
European standard [12] to determine the apparent power 
for the case of sinusoidal mode of the power supply system. 

Equality in formula (5) takes place under the condition of 

proportionality of the vectors )()( 2/12/1 tkt uRiR  , which 

is equivalent to 

(7) 1( ) ( )t k ti R u . 

Let's clarify the physical meaning of the vector 

)()( 1 ttS uRi  . Obviously, this is the short circuit current 

vector of voltage source loaded by transmission line 
resistances. Really, when the load terminals are closed, it 
satisfies the equation 

( ) ( )St t u Ri 0 . 

Thus, the first multiplier in (6) is short circuit power 
SP  of 

the voltage source loaded by cable resistances and 
apparent power is the average geometric value of currents 
power losses and short circuit power of the voltage source 
loaded by transmission line resistances: 

(8)                                      .SS P P   

This definition (8) is valid for two types of three-phase 
circuits, both four -wire and three-wire. In the latter case 
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When the current of a three-phase source is formed by 
shunt active filter (SAF), formula (7) implements the 
strategy of achieving a unity power factor with minimum 
energy losses [18]. The value of the proportionality 
coefficient is determined from the condition of the zero 
active power of the SAF in the form 
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Substitution of this value into formula (7) gives the 
refined value of the active current in the case of a four-wire 
three-phase power supply system that minimizes power 
losses in transmission line: 
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In the absence of voltage zero-sequence component or 
in the case of a three-wire transmission line, expressions 
(1) and (9) are equivalent. The expression in the 
denominator of formula (9) and the first multiplier of the 
apparent power in formula (6) is the short-circuit power of 
the three-phase voltage source loaded by cable 
resistances. Therefore, the active current of an arbitrary 
three-phase power supply system is part of the source 
short-circuit current vector equal to the ratio of the load 
power to the short-circuit power of the voltage source. 

Using the ratio for the line resistance matrix, we simplify 
the expression for the short circuit current vector:  
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u j j  the voltage 

zero sequence component; 3 / ( 3 )N Nr r r     the 

optimum value of the attenuation coefficient of this 
component that provides minimal power losses [18]. 
Substituting these values in (9), we obtain an expression for 
the active current of a three-phase four-wire system, which 
is used for practice 
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where )()()( 0 ttt uuu   . 

Neutral current caused by active current vector is given by 
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 Expression (12) completely coincides with the optimal 
value of the neutral current in the paper [13] that minimizes 
instantaneous power losses, after the replacement of the 
instantaneous quantities instead of the integral ones. 
 
The significance of the proposed formulas for practice 

Let us compare the apparent powers that are 
determined by the expressions (4) and (6), finding their 
values as the maximum active powers caused by the 
corresponding active currents at the same value of power 
losses P . Power losses during the flow of Fryze’s active 
current (1) proportional to the voltage vector, would be 

tdtt
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where the magnitude of the scalar factor is given by 
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Similarly, we find the power losses from the flow of an 
active current (9) proportional to the short-circuit current, as 
follows: 
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 The ratio of apparent powers founded as maximum 
active ones is specified by 
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and is determined only by the voltage vector and the 
parameters of the resistance matrix. Let us single out the 
orthogonal components of the phase voltage vector  
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 With this in mind the expression (13) is transformed to 
the form 
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where 2 2 2
0U U U    u u - square of the effective 

value of the corresponding orthogonal component. 
Fig. 2 shows the graphs of apparent power relative 

difference 
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Fig. 2. Apparent power relative difference versus voltage zero-
sequence factor under different values of transmission line 
resistances (dotted lines) and computer simulation results (� 
marked pots). 
 
 The discrepancy between the values of the apparent 
powers may exceed 10% for large relative values of the 
neutral resistance and zero-sequence factor. This leads to 
overestimated value of the power factor, the denominator of 
which is the Buchholz’s apparent power (4), and insufficient 
power losses minimization under the SAF’s control strategy 
that forms Fryze’s active current (1).  

The minimum possible power losses in the transmission 
line are realized with the SAF’s optimal control strategy that 
forms the active current (9): 
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We find the power losses gain in the application of SAF 
with optimal control strategy using (8), (15) and neglecting 
its own losses:  
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where /P S    power factor, in which the value of 
apparent power is represented by the formula (8). 

The last ratio leads to calculation formula for the 
experimental determination of the power factor: 
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We find the power losses gain in the formation by SAF 
of active currents (1) and (9): 
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By comparing formulas (14), (17), (18), we establish that 

(19)        / 1/ / .B F F F MINS S W P P      

In particular, the ratio of apparent powers / 1.1BS S   

corresponds to the power factor 0.909F   and the the 

power losses gain / 1.21.F F MINW P P     Thus, in the 

presence of voltage zero-sequence component SAF control 
strategy, which implements the proposed active current, 
provides up to 21% power losses gain in the transmission 
line compared to the original Fryze’s definition. 

 
Experimental verification of the proposed formulas 

For the experimental verification of the proposed 
formulas, it is sufficient to measure and compare the power 
losses in the transmission line with different SAF control 
strategies that form the currents of the three-phase source 
by formulas (1) and (11). Since the difference between the 
proposed formulas and definitions is manifested for the non-
zero value of the zero-sequence factor, let’s set a non-
symmetric vector of phase voltages 
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In [18] it is shown that for such a voltage vector, the 

parameter 2 2 2
0 /U U    is related to the amplitude relative 

instability / mU U    by the relation 
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Computer simulation of a three-phase four-wire system 
was carried out with the specified supply voltages and 
nonlinear load as three-phase diode rectifier scheme (Fig.3) 
in the PLECS environment with parameters 

4220 2 ; 1 ; 2 10m LU V R r       . Active currents in 

the transmission line according to (1), (11) were formed by 
active compensator with a control system implemented on 
dependent current sources. 
   

 
Fig. 3. Computer model of three-phase four-wire power system 
   

Instantaneous power losses were measured on resistors 
of transmission line and their waveforms are presented on 
diagram (Fig. 4) for parameter set rN = 3r; 0.2  . The 
average values of power losses are represented by dashed 
lines and for this case are 6.946FP W   and 

6.012MINP W   respectively. According to this diagram, 

the power losses gain in comparison with Fryze’s strategy is 
6.946 / 6.012 1.155,FW    and apparent power relative 

difference is  / 1 100% 7.487%.S F MINP P       . 
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Both these values are entered in the corresponding cells of 
Table 1 and S  is plotted on the theoretical dependency 

graph (Fig. 2) with 2
0 0.0196( 0.2).    The results of 

similar experiments with other values of the transmission line 
parameters and asymmetry are reflected by other 5 
experimental points in Fig. 2 and summarized in the Table 1. 
 

Table 1. The results of similar experiments  

 

 
Fig. 4. Waveforms of instantaneous power losses and their average values 

 In general, the results of the experiment confirm the 
adequacy of the proposed formula of apparent power and 
illustrate the possibility of power losses reducing up to 15% by 
implementing the proposed active current compared to the 
original Fryze’s one in the presence of voltage zero-sequence 
component. 
 

Conclusions 
 The Fryze’s active current with the given load active 
power and source voltages minimizes the rms value of the 
line currents that corresponds to current multiplier of the 
Buchholz’s formula of apparent power. 
 A new formula for apparent power of the three-phase 
four-wire system was justificated by theoretical and 
experimental researches. It is equal to the average 
geometric value of the currents power losses and short 
circuit power of the voltage source loaded by transmission 
line resistances. It definition is fully consistent with modern 
standards, allows us to correctly calculate both the power 
factor and power losses gain as well as formulate SAF’s 
control strategy with unit power factor. 

The generalized formula for introduced by Professor 
Fryze concept of power system’s active current is 
grounded. It is part of the short-circuit current that is equal 
to ratio between load power and short-circuit power of the 
voltage source. This active current transfers to a load of the 
three-phase power supply system the given energy with 
minimal power losses in transmission line. Computer 
simulation showed that SAF control strategy, which 
implements the proposed active current, provides up to 
15% power losses gain in the transmission line compared to 
the original Fryze’s definition in the presence of voltage 
zero-sequence component. 
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 rN = 3r  rN = r 3rN = r 

δ = 0.1 
∆2=0.00471 

FP ,W 6,351 6,179 6,122 

MINP ,W 6,119 6,115 6,108 

FW  1,038 1,010 1,002 

S ,% 1.877 0.525 0.116 

δ = 0.2 
∆2=0.0196 

FP ,W 6,946 6,253 6,022 

MINP ,W 6,012 5,994 5,965 

FW  1,155 1,043 1,009 

S ,% 7.487 2.137 0.478 


