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Generalized Frobenius matrices and angles between them  
in analysis of linear electrical circuits 

 
 

Abstract. Generalized Frobenius matrices and their inverses are applied in analysis of the linear electrical circuits. The basic  properties of 
generalized Frobenius matrices are analyzed. It is shown that if the state matrix of electrical circuit has generalized Frobenius form then its inverse 
system matrix has also generalized  Frobenius form. The notion of an angle between state matrices of linear electrical circuits is proposed and its 
basic properties are investigated.  
 
Streszczenie. Zaproponowane  w tej pracy uogólnione macierze Frobeniusa oraz ich odwrotności zostały zastosowane w analizie liniowych 
obwodów elektrycznych. Zostały zbadane podstawowe własności tych macierzy. Wykazano między innymi, że macierze odwrotne uogólnionych 
macierzy Frobeniusa  mają również postać uogólnionych macierzy Frobeniusa .Wprowadzono pojęcie kąta między macierzami stanu liniowych 
obwodów elektrycznych oraz zbadano ich podstawowe własności. (Uogólnione macierze Frobeniusa i kąty między nimi w analizie liniowych 
obwodów elektrycznych). 
 
Keywords: angle between state matrices, generalized Frobenius matrix, linear, electrical circuit. 
Słowa kluczowe: kąt między macierzami, uogólniona postać Frobeniusa macierzy, macierz stanu, liniowy, obwód elektryczny. 
 
 

Introduction 
The linear electrical circuits have been analyzed in many 
papers and books [4-6, 8-14]. The constructability and 
observability of standard and positive electrical circuits have 
been addressed in [5], the decoupling zeros in [6] and 
minimal-phase positive electrical circuits in [8]. A new class 
of normal positive linear electrical circuits has been 
introduced in [9]. Positive fractional linear electrical circuits 
have been investigated in [12] and positive unstable 
electrical circuits in [13]. Infinite eigenvalue assignment by 
output-feedback for singular systems has been analyzed in 
[7]. Zeroing of state variables in descriptor electrical circuits 
has been addressed in [15]. Controller synthesis for positive 
linear systems with bounded controls has been investigated 
in [1]. Stability of continuous-time and discrete-time linear 
systems with inverse state matrices has been analyzed in 
[16]. 

In this paper the generalized Frobenius matrices and the 
angles between state matrices of linear electrical circuits  
will be investigated. 

The paper is organized as follows. In section 2 the basic 
properties of generalized Frobenius matrices are  analyzed. 
The linear electrical circuits with state matrices in general 
Frobenius forms are investigated in section 3 and the 
inverse matrices of electrical circuits with generalized 
Frobenius forms in section 4. The angles between state 
matrices of linear electrical circuits are analyzed in section 
5. Concluding remarks are given  in section 6. 
 The following notation will be used:   - the set of real 
numbers, mn  - the set of mn  real matrices, mn

  - 
the set of mn  real matrices with nonnegative entries and 

1
  nn , nM  - the set of nn  Metzler matrices (real 

matrices with nonnegative off-diagonal entries), nI  - the 
nn  identity matrix.  

 
Generalized Frobenius matrices 
Definition 1. [14] The following matrices 
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are called the matrices in generalized Frobenius form. 
It is easy to verify that 
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and the coefficients of the polynomial are positive if and 
only if 0ka  and 0kb  for 1,...,1  nk . 

Theorem 1. The inverse matrix of the generalized 
Frobenius matrix is also the generalized Frobenius matrix. 
Proof. The proof will be given only for the matrix A1. The 
proof for the remaining matrices (1) is similar. 
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Theorem 2.  
1) If jis , 4,...,1j , ni ,...,1  are the nonzero 

eigenvalues of the generalized Frobenius matrix jA  

then 1
jis  are the eigenvalues of the inverse matrix 

1
jA , 4,...,1j .  

2) The inverse matrix of the generalized Frobenius matrix 
is asymptotically stable if and only if the generalized 
Frobenius matrix is also asymptotically stable. 

Proof. Let jis , 4,...,1j , ni ,...,1  be the zeros of the 
characteristic equation of the matrix jA  
(4) 0]det[  jjn AsI  for 4,...,1j .                         

Then multiplying (4) by ]det[ 11  jj As  we obtain 

(5) 
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Therefore, if jis , 4,...,1j , ni ,...,1  are the eigenvalues 

of the matrix jA  then 1
jis  are the eigenvalues of the matrix 

1
jA , 4,...,1j . The proof of 2) follows from the fact that 
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Theorem 3. The characteristic polynomial of the inverse 
matrices in the generalized Frobenius forms (1) is given by 
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for 4,...,1j  where nI  is the  nn  identity matrix. 

Proof. Using (3) and developing the determinant with 
respect to the first row we obtain 
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Similar results we obtain for .4,3,2j  □ 

Example 1. The characteristic polynomial of the 
generalized Frobenius matrix 

(8) 




















542

200

010

A                                                        

has the form 
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and its zeros are 11 s , 232  ss . 

The inverse matrix of (8) has the form 

(10) 
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and its characteristic polynomial 
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with zeros 11
1 s , 5.01

3
1

2   ss . 

 
Electrical circuits with state matrices in general 
Frobenius form 

Consider the electrical circuit shown in Fig. 1 with known 
resistance R, inductance L, capacitance C and source 
voltage e. 

 
 
Fig. 1. Electrical circuit. 
 

As the state variable we choose the voltage u on the 
capacitor with given capacitance C and the current i in the 
coil with given inductance L. Using the Kirchhoff’s laws we 
obtain the equations 

(12a) u
dt

di
LRie  ,                                                  
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dt

du
Ci   ,                                                   

which can be written in the form 

(13a) eB
i

u
A

i

u

dt

d
1111 

















,                                 

where 

(13b) 
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Note that the matrices A11 and A12 have the generalized 
Frobenius form and 

(14) 
LC

s
L

R
sAsIAsI

1
]det[]det[ 2

122112         

Therefore, the electrical circuit is asymptotically stable for 
all values R > 0, L > 0 and C > 0. 
Now let us consider the electrical circuits shown in Figure 2 
with known resistance R, inductance L, capacitance C and 
source voltage e. 
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Fig 2. Electrical circuits 
 
Fig. 2a we obtain the equations 

(15a) u
dt

du
CiRe 






  ,                                

(15b) 
dt

di
Lu   ,                                                             

Using the Kirchhoff’s laws for the electrical circuit shown in  
which can be written in the form 
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Note that the matrices A21 and A22 have the generalized 
Frobenius form and 

(17) 
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Therefore, the electrical circuit shown in Fig. 2a is 
asymptotically stable for all values R > 0, L > 0 and C > 0. In 
a similar way we may shown that the state equation of the 
electrical circuit shown in Fig. 2b has the form 
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The state equation of the electrical circuit shown in Fig. 2c 
has the form 
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Note that the matrices A31, A32, A41 and A42 have the 
generalized Frobenius form. It is easy to see that 

(20) 
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Therefore, the electrical circuits shown in Fig. 2 are 
asymptotically stable for all values R > 0, L > 0 and C > 0. 
Conisder the electrical circuits shown in Fig. 3 with known 
resistance R, inductance L, capacitance C and two source 
voltages e1 and e2. 

 
 
Fig. 3. Electrical circuits 
 
Using the Kirchhoff’s laws we obtain the equations 

(21a) u
dt

di
Le 1 ,                                                       

(21b) 
R
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dt
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1
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which can be written in the form 
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Note that the matrix A51 has the generalized Frobenius form 
as the matrix A41. 
Therefore, we have the following collorary. 
 
Collorary 1. The state matrix A of the electrical circuit is 
independent of its source voltage.  
Combining the electrical circuit shown in Fig. 2a and 2b we 
obtain the electrical circuit presented in Fig. 4 with given 
resistances R1, R2, inductances L1, L2, capacitances C1, C2 
and source voltage e. 
Taking into account (16a), (16b) and (18a), (18b) we obtain 
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where A21, B21 are given by (16b) and A31, B31 are given by 
(18b). 
Continuing this procedure we may obtain in general case an 
electrical circuit with nn  state matrix in generalized 
Frobenius form. 
 

 
 
Fig. 4. Electrical circuit. 
 
Inverse matrices of electrical circuits with generalized 
Frobenius forms 

Consider the electrical circuit shown in Fig. 2a with 
given parameters R, L, C and e. The inverse matrix of the 
state matrix A21 (given by (15b)) has the generalized 
Frobenius form  

(24) 
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and its characteristic equation is given by 
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The inverse matrix of the electrical circuit shown in Fig. 2b 
with given parameters R, L, C and e has the generalized 
Frobenius form 
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and its characteristic polynomial is given by 
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Similarly, the inverse matrix of the electrical circuit shown in 
Fig. 2c with given parameters R, L, C and e has the 
generalized Frobenius form 
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and its characteristic polynomial is given by 
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L
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412 ]det[ .   

Note that the characteristic polynomials (25), (27) and (29) 

have the same form and the inverse matrices 1
21
A , 1

31
A  

and 1
41
A  are asymptotically stable for all R > 0, L > 0 and  

C > 0. Therefore, the asymptotic stability of the electrical 

circuits is independent how are connected the elements R, 

L and C. 

The characteristic equation of the matrix 21A has the form  
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and after multiplication by LC we obtain 

(31) 012  s
R

L
LCs .                            

Note that the characteristic polynomal (29) has the same 
coefficients but in reverse order. This confirms Theorem 2. 
These considerations can be easily extended to generalized 
Frobenius forms matrices for  n > 2. 
 
Angles between state matrices of linear electrical 
circuits 

In this section the angle between two matrices will be 
defined and used in linear electrical circuits.  

To any given matrix mn
ijaA  ][  the following two 

corresponding vectors can be defined 

(32a) nmT
nmmm aaaaaaA  ][ 31221111          

and 

(32b) nmT
nnnn aaaaaaA  ][ˆ

13212111             

T denotes the transpose. 
Using the vectors of the matrices mnA   and 

mn
ijbB  ][  we may defined the following scalar 

product of the two matrices. 
Definition 1. The scalar 

(33) ijij

m

j

n

i
baBABA

11
)ˆ,ˆ(),(


                         

is called the scalar product of the matrices A and B. 
In particular case if A = B then 

(34) 0ˆ)ˆ,ˆ(),( 2

11

22



ij
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i
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for any nonzero matrix mnA  .   
Using (33) and (34) we may defined the angle φ between 
two given matrices A and B of the same dimensions.   
Definition 2. The angle defined by  

(35a) 
BA

BA

BA

BA
BA ˆˆ

)ˆ,ˆ(
arccos

),(
arccos,  ,  0      

is called the angle φ between the matrices A and B. 
The relation (35a) can be equivalently written in the form 

(35b) 
BA

BA
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BA
BA ˆˆ

)ˆ,ˆ(),(
coscos ,   .                  

From (35b) it follows ABBA ,, coscos    and 

ABBA ,, coscos   . 

In particular case if AB  then from (35b) we have 
1cos   and 0 . 

Example 2. Find the cos  between the following matrices  
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In this case 
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(37a) TA ]321021[  , TB ]110120[      

and 

(37b) TA ]312201[ˆ  , TB ]102110[ˆ  .       

Using (33), (34), (35b) and (37) we obtain 

(38a) 3)ˆ,ˆ(),(  BABA , 19ˆ 22
 AA , 7ˆ 22

 BB   

and  

(38b) 
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3
ˆˆ
)ˆ,ˆ(),(

coscos , 
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BA .       

Consider the following two matrices of the same dimensions 

(39) mn
ijaA  ][ ,  mn

ijbB  ][ .           

Definition 3. The matrix defined by  

(40) mn
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is called the Hadamard product of the matrices (39). 
Theorem 4. The angle φ between the matrices (39) is equal 

to 
2


 if the Hadamard product (40) of the matrices (39) is 

zero matrix. 
Proof. From Definitions 1 and 3 it follows that 0BA   
implies  

(41) 0),(
11
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i
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In this case from (35b) we obtain 0cos   and 
2

  . □ 

Example 3. Using (40) for the matrices  
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baBA .                      

Therefore, by Theorem 4 the angle between the matrices 

(42) is equal 
2


. 

Theorem 4. The angle φ between the matrices 
mn

ijaA  ][ , mn
ijbB  ][  satisfies the condition 

0cos   if and only if  

(45a) 0),(
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and 0cos   if and only if  

(45b) 0),(
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i
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Proof. Note that if (45a) is satisfied then from (35b) it 

follows that 0cos   since 0A  and 0B . 

Proof of (45b) is similar. □ 

A matrix mn
ijaA  ][  is called the Metzler matrix if 

0ija  for ji  , nji ,...,1,  . The Metzler matrix is 

asymptotically stable (Hurwitz) if and only if there exists a 
strictly positive vector ],...,[ 1 n  , nkk ...,1,0   

such that [17] 
(46) 0A .                                                       
Examples of electrical circuits with Metzler state matrix A 
are given in [17]. 
 
Theorem 5. The angle   between two asymptotically 

stable Metzler matrices nij MaA  ][ , nij MbB  ][  

satisfies the condition 
2

0
  .  

Proof. From (45) it follows that the diagonal entries iia  and 

iib  for ni ...,1  of asymptotically stable Metzler matrices A 

and B are negative. In this case the condition (45a) is 

satisfied and 
2

0
  . □ 

Example 4. Consider the following two asymptotically 
stable Metzler matrices   

(47) 
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Using (33), (35b) and (47) we obtain 
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and 

(49) 926.0
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6),(
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This confirms the thesis of Theorem 5. 
Example 5. Find the cos  between asymptotically stable 

Metzler matrix A given by (47) and the unstable Metzler 
matrix    

(50) 
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In this case we obtain 
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Theorem 6. Consider the electrical circuits shown in Fig. 2 
with given parameters R, L, C for two choices of the 
components of their state vectors. The angles between two 
matrices corresponding to different choice of the state 
variables in state vectors is the same.  

(53) 
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L
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kk
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k




2
21

21 2),(
cos    for 4,3,2k .       

Proof. Using (35b), (16b) and (16d) we obtain 
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(54a) 
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since 

(54c) 
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Proof for 4.3k  is similar. □ 
Remark 1. For the electrical circuit shown in Fig. 1 the 
angle between two matrices 11A  and 12A is given by 
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and is different from the ones of Fig. 2. 
Now let us consider the angles between the state matrices 

of the electrical circuits 1kA and their inverses 1
1

kA  for 

4,...,1k . 
Taking into account that for the electrical circuit shown in 
Fig. 1 
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For the electrical circuit shown in Fig. 2a we have 
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In a similar way for the electrical circuit shown in Fig. 2b we 
obtain 
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For the electrical circuit shown in Fig. 2c we obtain  
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Corollary 2. From comparison of (58b) and (60b) we have 

42 coscos    and all kcos , 4,3,2,1k  are negative. 

The above considerations can be extended to linear 
electrical circuits for 2n . 
 
Concluding remarks  
 Generalized Frobenius matrices and their inverses have 
been applied in analysis of the  linear electrical circuits. The  
properties of generalized Frobenius matrices have been 
analyzed. It has been shown that if the state matrix of 
electrical circuit has generalized Frobenius form then its  
inverse system matrix has also Frobenius form. The notion 
of an angle between state matrices of linear electrical 
circuits has been proposed and its basic properties have 
been investigated. The considerations have been illustrated 
by examples of linear electrical circuits with state matrices 
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in generalized Frobenius forms. The considerations can be 
easily extended to fractional linear electrical circuits. 
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