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The use of the autoencoder to improve images in ultrasound 
tomography 

 
 

Abstract. The article presents the idea of a system enabling effective control of industrial processes. The high level of automation and processes 
monitoring plays a key role in maintaining the competitiveness of each enterprise. The paper presents an innovative approach to industrial 
ultrasound tomography. A shallow neural network enriched with an autoencoder was used to visualize the 2D cross-section of the tank (reactor) filled 
with tap water. The novelty is the use of an autoencoder to improve the quality of the measurement vector 
 
Streszczenie. W artykule przedstawiono ideę systemu umożliwiającego efektywną kontrolę procesów produkcyjnych. Wysoki poziom automatyzacji 
i monitorowania procesów produkcyjnych odgrywa kluczową rolę w utrzymaniu konkurencyjności każdego przedsiębiorstwa. W artykule 
przedstawiono nowatorskie podejście do przemysłowej tomografii ultradźwiękowej. W celu zobrazowania dwuwymiarowego przekroju zbiornika 
(reaktora) wypełnionego wodą z kranu wykorzystano płytką sieć neuronową wzbogaconą o autoenkoder. Nowością jest zastosowanie autoenkodera 
w celu poprawy jakości wektora pomiarowego. (Zastosowanie autoenkodera do poprawy jakości obrazów w tomografii ultradźwiękowej). 
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Introduction 
Ultrasound tomography (UST) is a relatively uncommon 

imaging technique that can be used to diagnose industrial 
processes, including reactors and tanks. The advantages of 
this method include security for staff and processes, non-
invasiveness, speed of operation and low costs of using 
UST technology. Due to the non-invasive nature of UST, 
this method has great potential for use in various areas of 
the economy. In particular, these are the following fields of 
application: food and chemical industry, production of 
detergents, paints and cosmetics, pharmaceutical industry 
etc. Industrial processes are usually characterized by high 
variability (dynamics), which is why imaging speed is an 
important factor in monitoring systems. The most popular 
techniques used in industrial tomography include: electrical 
tomography, computed tomography (CT) [1] and radio 
tomography (RT) [2]. Electrical tomography can be divided 
into electrical impedance tomography (EIT) [3,4], electrical 
resistivity tomography (ERT) and electrical capacitance 
tomography (ECT) [5–10]. 

Ultrasound/ultrasonic tomography (UST) is one of the 
less common methods in industrial applications, but it is 
very popular in medical imaging [11]. This fact indicates the 
existence of available potential of UST in industry. To meet 
expectations in the field of imaging speed, while maintaining 
high quality tomographic images, the described research 
uses the shallow feedforward neural network. 

There are many methods for solving optimization 
problems [12-19]. The novelty of the presented approach is 
the use of an autoencoder to reduce the noise of the 
measurement vector [20]. In the described case, the input 
vector contained 496 measurements. The output image was 
displayed on a monochrome monitor with a resolution of 32 
× 32 (1024 pixels). The basic reconstruction algorithm 
operates based on a neural network with the following 
structure: 496 (inputs) - 1024 (hidden neurons) - 1024 
(output neurons) - 1024 (real output values). 

 
Materials and methods 

As it was previously mentioned the research described 
in this a\rticle use a method based on artificial neural 
network (ANN) preceded by an autoencoder. The 
measurement vector constituting the ANN input consists of 
496 measurements. Each of the measurements reflects the 

time in which the sound wave travels the distance between 
individual transducers. Each of the 32 transducers located 
around the walls of the container can both emit and receive 
ultrasound signals. If there are no inclusions in the sound 
wave path, the time is the shortest. Before starting the 
measurements, the system performs the reference 
measurement in an inclusion-free environment. In this way, 
the appearance of inclusions interferes with (decreases) the 
speed of sound, thus increasing the time recorded between 
the individual transducers. This allows you to determine the 
location and size of the inclusions. 

The test object is a physical model of an industrial 
container. During the research, the container filled with tap 
water was used. Different inclusions were hidden in the 
water and ultrasound measurements were performed. 
Knowledge of location and dimensions, as well as the 
number of all inclusions corresponding to each 
measurement, enabled the development of a simulation 
algorithm that generated 20,000 simulation cases 
(measurements and pattern images).  

Fig. 1 presents the test stand that was used for 
validation of the simulation algorithm. The stand consists of 
a tank filled with tap water. 32 transducers which can 
generate ultrasound waves and receive them were placed 
around the tank. Plastic tubes of various diameters, in 
various quantities and in different positions relative to each 
other were immersed in water. At the bottom of the tank you 
can see numbered markings enabling the location of 
individual inclusions. 

 

 
 

Fig. 1 The test stand with 32 transducers arranged around the 
bucket 
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Fig. 2 visualizes an example of a simulation of 
generating one of 20,000 measurement cases. The figure 
shows an example of a cross-section of a container with 
visible inclusions.  Each separate case taking into account a 
specific distribution of inclusions has a different distribution 
of measurement values. Because of this, ANN and 
autoencoder can capture the relationship between the 
values of individual elements of the measurement vector 
(inputs) and the values of the pixels of the output image. 

 

 
Fig. 2 example of a cross-section of a container with visible 
inclusions 

Designing autoencoder architecture 
Autoencoder is a special kind of neural network that is 

trained in input replication at the output. Autoencoders can 
be used as data denoise tools as well as for training neural 
networks. Autoencoder training is done without supervision 
in the sense that one set of data is used, without using any 
reference data (patterns) [21]. The training process is still 
based on the optimization of penalties (cost values). The 
penalty function measures the error between input ݔ and its 
reconstruction at the output ݔො. The autoencoder consists of 
an encoder and a decoder. The encoder and decoder can 
have many layers, but in presented research it was 
assumed that each of them has only one layer. If the input 
layer is a vector ݔ ∈ Թೣ then the encoder converts the 

vector ݔ to another vector ݖ ∈ Թሺభሻ as follows (1): 
      1 1 1z h W x b 

 
(1) 

where ݄ሺଵሻ: Թሺభሻ → Թሺభሻ is the encoder transfer 

function; ܹሺଵሻ:Թሺభሻൈೣ → Թሺభሻ	 is the weight matrix; 

ܾሺଵሻ ∈ Թሺభሻ is a bias vector; the superscript (1) means the 
first layer of autoencoder.  

Strengthening the sparsity autoencoder is achieved by 
adding a stabilizer to the cost function. The regulatory 
element is a function of the mean baseline value of neuron 
activation. The average value of the neural output activation 
i is defined as (2): 
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where ݔ: is the jth training example; n is the overall 

number of training examples; ݓ
ሺଵሻ் is the ith row of the 

weight matrix ܹሺଵሻ; ܾଵ
ሺଵሻ

 is the ith entry of the bias 

vector, ܾሺଵሻ. 
A neuron is considered 'fired' if its output power 

activation value is high. A low output activation value means 
that the neuron in the hidden layer 'fires' in response to a 
small number of training examples. Adding this term to the 
cost function, which limits ߩො to a low level, encourages the 
auto encoder to learn representation, where each neuron in 
the hidden layer launches a small amount of training cases. 

This means that each neuron specializes in a function that 
is only present in a small subset of training examples. 

The sparsity regulator attempts to force the sparsity limit 
to exit from the hidden layer. Parameterization can be 
supported by adding a regularization term, which takes a 
high value when the average value ߩො of neuron activation i 
and its desired value ρ is not close to the value (cost 
function) [22]. One such term for sparse regularization Ω௦ 
may be the Kullback-Leibler divergence which can be 
transformed into the form (3). 

 

 
Fig. 3 ANN preceded by an encoder. 
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where: D(1) is the number of neurons in the encoder 
output; ߩො is the mean activation value of neuron i; ρ is 
desired value. 

The Kullback-Leibler divergence is a function for 
measuring the difference between two distributions. In the 
presented case it takes the value zero, when ρ and ߩො are 
equal. If they differ, they become larger. Minimizing the 
criminal function forces the term to be small. Therefore, the 
values of ρ and ߩො are close to each other. An average 
activation value of 0.05 was used during autoencoder 
training. The penalty (cost function) used to train a sparse 
autoencoder is an adjustable function of the mean square 
error, which can be represented in the following form (4): 
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where β is the coefficient for the scarcity settlement 
period and λ is the coefficient for the L2 settlement period. 
During autoencoder training, the values of these coefficients 
were as follows: λ = 0.005 and β = 1.2. In formula (4) the 
expression 	ߣ ∙ Ω௪ is the L2 norm for weight regulation, and 
ߚ ∙ Ω௦ is the sparsity factor for regularization. 

During the sparse autoencoder training process, the 
size of the sparse regulator can be reduced. This is done by 
simultaneously increasing the weight ݓሺଵሻ values and 
reducing the values of ݖሺଵሻ. To prevent this, add the term 
"weight adjustment" to the cost function. This term is called 
the L2 regularization term Ω௪ and is defined by (5): 
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where L is the number of hidden layers; n is the number 
of observations (cases); k is the number of variables in the 
data set. 
In addition to the autoencoder, UST images were 
reconstructed using a classic artificial neural network (ANN) 
with a multilayer perceptron structure with only one hidden 
layer. The neural network contained 469 inputs, one hidden 
layer with 1024 neurons, 1024 neurons in the output layer 
and 1024 outputs in real numbers. 1024 output values are 
converted to a 32×32 pixel image. 496 measurements must 
be enough to reproduce 1024 pixels, which means that we 
are dealing with a vague problem. The entire data set 
consisted of 20,000 cases generated by a simulation 
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algorithm. These were measurements of the propagation 
time of sound waves in the tested tank expressed in [μs]. 
The data set has been divided into 3 subsets: training set, 
validation set and testing set in the proportions 70:15:15. 

Fig. 3 shows the structure of a hybrid network consisting 
of an encoder and an ANN. The encoder input contains a 
vector of 496 measurements. It is encoded on 1024 
outputs, which constitute the input to the ANN. ANN is a 
multilayer perceptron with 1024 neurons in the hidden layer, 
1024 neurons in the output layer and 1024 output values. 
By encoding 496 measurements to more features, the 
incompleteness problem has been solved. 
 
Results 

Figures 4-6 show a comparison of image reconstruction 
obtained using ANN only, and ANN enhanced with an 
encoder. Five selected reconstructions were compared, 
differing in the number of inclusions, size and location in 
relation to the walls of the tested tank. Column (2) contains 
pattern images. Column (3) shows the reconstruction 
results generated by pure ANN (without encoder). It can be 
seen that all the images in the column (3) are very noisy, 
although they contain outlines of inclusions. Column (4) 
presents the results of reconstructions obtained using ANN 
enhanced by encoder. Most of the noise has been removed 
this way.  
 

a) 

 
b) 

 
c) 

 

Fig.4. Image reconstructions – model I: a) pattern, b) direct ANN 
reconstruction, c) ANN reconstruction enhanced by encoder 
 

Thanks to the use of encoder prior ANN, the inclusions 
are clearly visible and precisely mapped. In the case where 
the inclusion is small, the algorithm mapped it slightly less 
in contrast than in the reference image. However, it is still 
visible. 

a) 

 
b) 

 
c) 

 
Fig.5. Image reconstructions – model II: a) pattern, b) direct ANN 
reconstruction, c) ANN reconstruction enhanced by encoder 

 
 

a) 

 
 

b) 

 
c) 
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Fig.6. Image reconstructions – model III: a) pattern, b) direct ANN 
reconstruction, c) ANN reconstruction enhanced by encoder 
 
Conclusions 

The article presents an original concept of using a 
neural network enhanced with an autoencoder to denoise 
input data. The presented research used ultrasound 
tomography to identify hidden inclusions in a water-filled 
tank. The input vector contained 496 measurements that 
were characterized by high level of noise. The source of 
noise were errors and inaccuracies in measuring devices, 
as well as interference in the way of data transfer between 
particular elements of the measuring system. Studies have 
shown that using conventional ANN, the resulting 
reconstruction images are blurred and out of focus. The 
sparse encoder located in front of the ANN inputs, 
significantly improves the quality of the measurement data. 
In addition, the use of an encoder in a sufficiently large 
number of neurons allows the conversion of an 
undercomplete problem to overcomplete, which 
expressively improves reconstruction results. Our research 
confirmed that the use of sparse autoencoders can 
significantly improve tomographic imaging results. Thanks 
to this, the UST method, which is not widely used, can be 
successfully used in industry. 
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