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SARIMA and Holt-Winters Method based Microgrids for Load 
and Generation Forecasting 

 
 

Abstract. The modern power grid faces challenges regarding many complex factors affecting both demand and generation; including growth in 
demand; incorporating large-scale renewable power penetration; uncertainties in climate change; lack of historical data; and coordination of the large 
volume of data. These issues have resulted in complications in forecasting load and generation in microgrids. The loads are becoming more erratic 
and the generation is intermittent. Thus, this paper presents a study of different forecasting approaches for load and generation, by comparing 
multiple univariate and multivariate methods to analyse their effect. The study also proposes seasonal models: the SARIMA model taking into 
consideration the historical load, the correlation of weather data and renewable integration to estimate future behaviour of the microgrid by predicting 
one day ahead using critical load data; whereas the Holt Winters method is used for generation forecasting. A case study is simulated using real-
world microgrid data for the selected geographic location in Australia. The results suggest that for the day-ahead load forecast, the SARIMA model 
performed relatively better compared to MLR, Holt-Winters additive and multiplicative methods; whereas, for generation forecasting, Holt-Winters 
Additive Method and SARIMA perform well for Autumn and Summer respectively. The results suggest that the proposed approach of using different 
seasonal models for load and generation forecasting yields higher accuracy as compared to conventional forecasting.  
 
Streszczenie. Nowoczesna sieć energetyczna stoi przed wyzwaniami dotyczącymi wielu złożonych czynników wpływających zarówno na popyt, jak 
i na wytwarzanie; w tym wzrost popytu; włączenie penetracji energii odnawialnej na dużą skalę; niepewność w zmianach klimatu; brak danych 
historycznych; i koordynacja dużej ilości danych. Problemy te spowodowały komplikacje w prognozowaniu obciążenia i generacji w mikrosieciach. 
Obciążenia stają się coraz bardziej nieregularne, a generacja jest przerywana. Dlatego w niniejszym artykule przedstawiono badanie różnych 
podejść do prognozowania obciążenia i generacji, porównując wiele metod jednowymiarowych i wielowymiarowych w celu przeanalizowania ich 
wpływu. W badaniu zaproponowano również modele sezonowe: model SARIMA uwzględniający obciążenie historyczne, korelację danych 
pogodowych i integrację odnawialną w celu oszacowania przyszłego zachowania mikrosieci poprzez prognozowanie z jednodniowym 
wyprzedzeniem przy użyciu danych o obciążeniu krytycznym; natomiast do prognozowania generacji wykorzystywana jest metoda Holta Wintersa. 
Studium przypadku jest symulowane przy użyciu rzeczywistych danych mikrosieci dla wybranej lokalizacji geograficznej w Australii. Wyniki sugerują, 
że w przypadku prognozy obciążenia dnia następnego model SARIMA sprawował się relatywnie lepiej w porównaniu z metodami addytywnymi i 
multiplikatywnymi MLR, Holta-Wintersa; podczas gdy w przypadku prognozowania generacji, metoda Holt-Winters Additive Method i SARIMA 
dobrze sprawdzają się odpowiednio w okresie jesiennym i letnim. Wyniki sugerują, że zaproponowane podejście polegające na wykorzystaniu 
różnych modeli sezonowych do prognozowania obciążeń i generacji zapewnia wyższą dokładność w porównaniu z prognozowaniem 
konwencjonalnym. (Metoda SARIMA i Holt-Winters do prognozowania obciążenia i generacji w mikrosieciach) 
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Introduction 

With technological advancements, the penetration level 
of renewable energy sources (RES) is increasing rapidly. 
Concepts of distributed generation at consumer level are 
becoming commonly used in nearly all countries. Increasing 
penetration of RES is gradually converting their power 
systems from being load-led to generation-led. These new 
factors are gradually making the transition from a 
centralized electric grid towards a de-centralized grid, as in 
microgrids. Microgrids can be defined as low-voltage power 
distribution networks containing different distributed energy 
generators, energy storage and controllable loads, which 
can be interconnected with the central grid, or can work in 
island mode when disconnected from the grid [1]. The 
microgrid has been a familiar term in off-grid remote 
electrified systems, particularly in off-grid PV or small hydro 
power projects; a typical application being off-grid 
telecommunication projects. In the context of grid 
connected microgrids, the traditional and uni-directional 
producer-consumer definition has evolved: where the 
consumer is also a producer, called a prosumer i.e. 
producer and consumer [2]. Now with the increase in 
urbanization and the availability of large-scale distribution, 
the RES will enable users to produce a huge amount of 
renewable energy locally for self-consumption and feeding 
the local community and/or the main grid, in scenarios 
where surplus energy is generated. 

Apart from providing clean energy locally, as compared 
to the grid energy, it will also result in fewer line losses and 
the option of keeping the loads energized by isolating itself 

from the grid in case of disturbances; thus, the introduction 
of the microgrid will lead to a more sustainable energy 
system [3]. Accurate forecasting of electricity demand is 
vital for the resilient management of energy systems. For 
the stability of the grid operation and microgrid operational 
planning, short-term load forecasting is an essential part of 
a microgrid energy management system and grid 
operations. For daily energy management and planning, for 
both scenarios of improving energy dispatch and overall 
power system stability, short-term forecasting is of utmost 
importance.  

Load forecasting for microgrids differs from the large 
power-grid forecasting particularly because of the small 
number of consumers, resulting in lower load magnitude. 
This ultimately means that the aggregated effect of the load 
is less smoothed, resulting in a higher variability of load 
relative to its mean [4-8]. The lower the magnitude, the 
higher the variations and uncertainty in loading conditions,  
increasing the complexity of forecasting process. A small 
number of consumers and high variations can potentially 
lead to a significantly incorrect load forecast, and 
maintaining the accuracy of a forecast in such scenarios is 
a challenging task. At a higher aggregation level of load, the 
load curve is smoothed. The intricacy of the load profiles at 
different levels of load aggregation can be seen in Figure 1 
[9], where daily load profiles ranging from a country to a 
single consumer are shown. 

Different load forecasting techniques have been used in 
the literature to forecast load at an individual level. These 
are mainly classified into statistical techniques and artificial-
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intelligence-based techniques. The AI-based techniques are 
complex, require a large amount of data and are black box 
models. Statistical models are widely used in the energy 
industry and are considered to be reliable. Many of these 
techniques include linear regression, multiple linear 
regression, autoregressive moving average, and seasonal 
autoregressive integrated moving average. The major 
advantages of these methods are their simplicity, fast 
training process, and high degree of interpretability. 
However, where these are used in grid connected studies, 
most of the previous work lacks incorporation of the 
variables which consider RES generation. Therefore, for a 
microgrid there is an important need for a comprehensive 
study that considers RES generation as part of the load 
forecasting. 

This paper considers different statistical forecasting 
techniques to comprehensively forecast the load of a 
microgrid, and also considers RES generation forecasting 
separately. Apart from the conventional statistical 
approaches, the study considers a seasonal auto-
regressive integrated moving average (SARIMA) model and 
the Holt-Winters seasonal method; taking into consideration 
the historical load, the correlation of weather data and 
renewable integration, to estimate the future behaviour of 
the microgrid by predicting one-day-ahead critical data. The 
study investigates univariate and multivariate methods for 
forecasting day-ahead electricity load and generation at 
half-hourly intervals. The univariate methods study past 
load and generation information, and multivariate methods 
include the use of both past load, generation information 
and weather data. Due to the variability of the data, the 
same houses’ data for four seasons is taken separately for 
modelling and analysis. For the four-seasons, peak demand 
and generation prediction are also performed and their 
effectiveness is discussed. 
 

 
Fig. 1 (a) load profile of country (b) load profile at local substation 
(c) load profile industrial area (d) residential house load profile  
 

Methodology and Case Study 
This study incorporated 300 Australian households’ 

energy data for over three years, with 30 minutes’ data 
resolution [10]. The energy data of the houses, in 
metropolitan Sydney and surrounding areas, was collected 
via gross metering and consists of separate metering for PV 
generation, residential energy usage and controlled load 
(used for water heating). During the data pre-processing 
stage, the houses containing the controlled load were 
deleted to eliminate the impacts of controlled loads on the 
forecast. Considering the fact that in the case of microgrids, 
the factors such as temperature and solar irradiation require 
to be as accurate as possible, only the houses near 
Newcastle, New South Wales, Australia were selected for 
short-term forecast purposes. The data of the selected 
houses was checked for any unusual behaviour in 
generation or consumption. After necessary data cleansing, 

the clean generation and consumption data from June 2010 
to June 2013 was selected for 26 houses containing only 
PV generation and residential load. For the analysis of the 
smart microgrid environment, these 26 households’ 
consumption (peak of 115 kW) and generation data (with 
collective installed capacity of 61.72 kW) were separately 
aggregated with 52,560 data points. 

For visualization of load with respect to temperature, 
with the half-hourly energy usage plotted against 
temperature, no significant change in load with respect to 
temperature was observed. This is due to the very smaller 
load size and the daily fluctuations of the load are more 
severe as compared to the change in load with respect to 
temperature. So, total daily energy consumption was 
summed for each day and is plotted against temperature in 
Figure 2. In the winter and summer, the total daily load has 
a clear relationship with temperature; while for the spring 
and autumn seasons it’s quadratic. 
 

 
Fig. 2 Temperature (x axis degrees centigrade) vs Sum of Daily 
Energy Consumption (y axis watt-hour) for all seasons (2010 to 
2013) 
 

In Figure 3, the normalized half-hourly load is plotted 
against the time, showing higher variations in summer as 
compared to other seasons, which is due to usage of air 
conditioners in the summer season. Also, the high peak 
loads are observed in summer as compared to other 
seasons. 
 

 
 
Fig. 3 Normalized load of all seasons vs time (one year- half-hourly 
energy usage recorded) 
 

Table 1 shows the coefficient of variation (CV) for all the 
seasons’ data over three years. It shows the extent of 
variability in relation to the mean load and is defined as the 
ratio of the standard deviation divided by mean. The 
coefficient of variation is more in winter and summer as 
compared to the other two seasons. 

Figure 4 and Figure 5, present the autocorrelation 
function (ACF) and partial autocorrelation function (PACF) 
of the half-hourly loads in the winter season. High 
autocorrelation of the load time series can be seen at 1- 
and 48-hours’ lags, showing the daily seasonality of data. 
The ACF and PACF for other seasons also shows a similar 
trend. 
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Table 1. Ratio of the standard deviation and mean of the hourly 
loads for all four seasons 

Season Std/Mean (%) 
Winter 55.2138 

Summer 52.2523 
Autumn 37.2378 
Spring 47.1997 

 

 
Fig. 4 Auto correlation plot of winter season data  
 

 
Fig. 5 Partial correlation plot of winter season data 
 
Prediction Models 
 Three statistical load forecasting methods were used to 
forecast load data from microgrid consumers. The three 
methods were: seasonal autoregressive integrated moving 
average (SARIMA) [11]; multiple liner regression (MLR) 
[12]; and double exponential smoothing [13]. Except for the 
MLR, the same models are used for forecasting PV 
generation also. 

The deviations in the model predicted for half-hourly 
loads for the day from the observations are quantified in 
terms of mean absolute percentage error (MAPE) of half-
hourly loads. For the generation forecast error calculations, 
the mean absolute deviation (MAD) is used, because of 
MAPE’s inability to address zero values. 

 
Multiple Linear Regression 
 The purpose of multiple linear regression (MLR) is to 
model the relationship between different independent 
variables (e.g. temperature and time of the day) and a 
dependent variable (electrical load). Generally, the MLR 
equation can be written as: 

(1)   

where Y is the dependent variable; X1 and X2 are the 
independent variables; and c is the categorical variable. 
The independent variables are chosen as many weather 
variables mostly for the large grid data, since for large data, 
the effect of weather is very profound; such works were 
done on the Irish electricity supply system [14]. In a similar 
work for national level data, a regression model was 
developed for energy consumption in Eastern Saudi Arabia; 
and the independent variables chosen were weather data, 
solar radiations population and GDP [15]. However, in the 
case of the small microgrid, the effect of such variables is 

very negligible or can’t be captured easily because of the 
high variability of the data.  

So, the independent variables of temperature and its 
square (for capturing the non-linear relation of the loads to 
temperatures) were selected and each hour of the day was 
taken as the categorical variable (by giving each hour of the 
day a binary value in the model calculation).  

For the modelling of the load forecast, different models 
of MLR were tested with the past data, and the final model 
was selected based on the least value of variance or mean 
squared error (MSE). In the final model Pi, the load 
consumption at each half hour i, can be expressed as 

 
(2)  Pi = a +b1t2+b2t2

2+ci 
 

where a is the y intercept (constant computed); b is the 
coefficient; and ci is the categorical variable calculated for 
each half hour of the day. 

For the consumption forecast, we got different values 
when the model was tested, forecasting for an hour ahead 
in different seasons of the year. However, in the case of the 
generation, the results were not satisfactory. The relation 
between temperature and the PV output was negligible, 
especially considering the combined capacity for the PV 
panels; so MLR forecast results for generation are not 
discussed in this study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 6 SARIMA model flow chart  

ARIMA and SARIMA Models 
 By applying regression methods to a set of past load 
data, models are generated defining how load changes over 
time. Forecasting for the future is carried out using these 
models. Two of the basic forms of time-series models are, 
the autoregressive model (AR) and the moving average 
(MA). The AR model is used in time-series data when it is 
linearly dependent on the historical values; while the MA is 

ܻ ൌ	0ߚ  1ߚ 1ܺ  2ܺ2ߚ  ܿ 
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used when the time series is a function of the mean value 
from current and previous white noise error terms. The 
order of the AR(p) and MA(q) are generally represented by 
p and q, which also represents the degree of the model 
dependency on past values at corresponding time step 
lags, p and q [16]. 
 The ARIMA forecasting model is applicable on time 
series if the time series is stationary (whose characteristics 
like its mean, variance, autocorrelation, etc. are all constant 
over time) and have a decreasing auto-covariance function 
[17]. A general ARMA(p,q) model can be represented as 
follows: 
 

(3)               
ݐሻܺܤሺ߶   ݐߝ ሻܤሺݍߠ = 

(4)         
	ሻܤሺ߶ ൌ	 ሺ1‐B߶1‐	B2߶2‐	 	 …………....	Bp ሻ߶

  

(5)        
	ሻܤሺߠ ൌ	ሺ1	1ߠܤ Bq	……………	1ߠܤ  ሻݍߠ

  

where ߶ሺܤሻ represents the autoregressive (AR) portion of 

the model; ߠሺܤሻ represents the moving average (MA) of the 
model; and B is the backshift operator Bjxt = xt-j; Xt is the 

time series defined; and ݐߝ    are the power usage and noise 
at time t respectively [17]. 
 Also, when the series is not stationary, differencing is 
applied to make it stationary and decrease autocovariance; 
the method is the autoregressive integrated moving 
average (ARIMA) model. An ARIMA (p,d,q) model for the 
time series Xt is expressed as 
 

(6)            
ሻ(1-B)dܤሺ߶

   ݐߝ ሻܤሺݍߠ=ݐܺ
 

 Where d is the order of differencing for making the 
series stationary; an ARIMA model without differencing is 
the ARMA (p,q) model.  
Thus, SARIMA stands for seasonal (AR) auto regressive 
integrated (MA) moving average. Seasonality in a time 
series is a regular pattern that repeats itself after an equal 
amount of time. Figure 6 shows the flow chart for the 
SARIMA model. 
 A SARIMA (p, d, q, P, D, Q) model can be represented 
using the following equation: 
 

(7)          
߶ܲሺݏܤሻ߶(B)d

    ݐߝ ሻܤሺݍߠሻݏܤሺܳߠ=ݐܻ
 
Where, 
(8)        Yt = (1-B)d(1-Bs)DXt  
 

 Where D is the seasonal order of differencing; P is the 
seasonal autoregressive factor; and Q is the seasonal 
moving average factor. The model of goodness of fit is 
evaluated using the Akaike information criteria (AIC). The 
AIC is used to compare models with a varying number of 
explanatory variables. 
 With the ACF plot of the three years of data in Figure 4, 
we can see strong seasonality after 48 intervals, but no 
apparent trend. Since a seasonality after the 48th interval is 
clear, we will take the 48th difference of the time series and 
check if the differenced series has any trend or seasonality 
apparent in the ACF. From the ACF and PACF plots of 
seasonally differenced series below, we can see the series 
is stationary. 
 From the ACF and PACF of the seasonally differenced 
time series, the exact SARIMA model is not clear, as seen 
from Figure 7, so 66 potential SARIMA models are checked 

with multiple sets of past data, to find the one with the least 
AIC value. The final parameters p, d, q, P, D and Q are 
chosen comparing different model AIC values [18], and that 
is calculated by: 
 
(9)          AIC = -ln(L)+2m      
 
 Where, L is the maximined likelihood function of the 
model; and m is the number of parameters given by   
(p+q+1). 
 Using most of the past data, the AIC values were 
calculated for all the 66 possible combinations of SARIMA 
models; and the AIC value of the 66 models was compared 
to find the one with the lowest AIC value. Based on the 
methodology, SARIMA (1,0,2) (3,1,2) 48 was selected. 
 

 

 
Fig. 6 ACF and PACF of seasonally differenced time series 
 

On checking for the residuals of the model with the 
lowest AIC value, by plotting the ACF and PACF of the 
residuals, we can see in Figure 7 that the residual is white 
noise as there are no significant spikes or there is no 
correlation. Figure 8 shows the residuals with 
autocorrelation. With that value of the SARIMA model, the 
forecasting for a day ahead is carried out. The calculated 
value of the MAPE turned out to be 11.028% and a 
comparison of observed and forecasted load is given in 
Figure 9. 
 The same methodology is adopted for the remaining 
three seasons. For the PV generation forecast, day time 
from 7 am to 7 pm is considered. Since there were 24 half-
hourly observations during the day time, the seasonality of 
a value of 24 is used. 
 
Holt-Winters Seasonal Method 
 The Holt-Winters method uses exponential smoothing. It 
assigns more weight to recent data values and assigns less 
weight to the older data. The Holt-Winters method uses an 
improved method of exponential smoothing where three 
different smoothing formulae are applied to the series. The 
method considers the level, trend and seasonality of the 
time series using three equations, one for each and a final 
one for the forecast equation. For the level, trend and 
seasonal component, it has smoothing parameters for each. 
 Depending on the nature of the seasonal component, 
there are two elements First is the additive model, where 
the seasonal variations are roughly constant; and the 
second is the multiplicative method, where the seasonal 
variations are changing proportional to the level of the 
series [19]. 
In our case, due to changing behaviour of the data, both 
additive and multiplicative models are considered. 
The additive model from [20] is given as: 
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(10)       
)b)(a1()s(a 11   ttpttt Y 

       

(11)        11 )b1()a(ab   tttt 
       

(12)        ptttt Y  )s1()a(s 
       

where:  

(13)       TTTTŷ sba             

,  and  are the smoothing parameters; at is the 
smoothed level at time t; bt is the change in the trend at 
time t, st is the seasonal smooth at time t, p is the number 
period of seasonality, in this case of consumption forecast 
is 48 and for the generation forecast it is 25 for 24 hours. 
 

Firstly, the initial values are defined,  

(14)       )(
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(15)       
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(16)       ppppp YsYsY a    ,     ,a     ,as 2211  
  
 For all the four seasons’ data, the smoothing values are 
first estimated by forecasting for an earlier equations, from 
all the possible combinations of the smoothing 
 

 
 

Fig. 7 Residuals of the SARIMA model, show the error has not 
correlation and same as white noise 
 

 

Fig. 8 Day-ahead forecast plotted against the observed data, using 
the SARIMA model 
 

Parameters. The final values are selected by comparing 
the MSE of the earlier day forecast versus observation 
values for all possible combinations of the smoothing 
parameters [20]. 

For the Holt-Winters multiplicative model as in [20]: 

(17)        )b)(a1(
s

a 11 


 tt
pt

t
t

Y
   

(18)        11 )b1()a(ab   tttt    

 The initializing values are the same as in the additive 
method, while: 

(20)         
p

p
p

pp

Y
s

Y
s

Y

a
     ,     ,

a
     ,

a
s 2

2
1

1  

  
 With the same procedure used for calculating the 
smoothing parameters, the final prediction for period 

T : 

(21)          TTTTŷ )sb(a     
 

Results  
 This section delineates on the results of forecasting 
using the four models. For all the four seasons, data for the 
26 households’ prediction errors are compared using MAPE 
for half-hourly load predictions; then MAPE for daily peak 
load predictions (peak load hours of the residential houses 
were taken from 5 pm to 11 pm); and finally, then MAD for 
half-hourly energy generation. For comparison of 
generation and load forecast errors, the load forecast errors 
are also calculated in terms of MAD. 
 An overall comparison of load forecast shows that the 
SARIMA model performed relatively better than the rest of 
the models. The highest forecast accuracy was achieved in 
summer; whereas autumn proved to be the worst forecast 
season, as can be seen from Figure 10 and the peak of 
errors follows the same trend, as shown in Figure 11. 
However, for the generation forecast, the Holt-Winters 
additive method performed significantly better than the 
others. Contrary to the load forecast MAPE, the generation 
forecast was least accurate during the summer, and during 
the other seasons the accuracy level of the forecast using 
the Holt-Winters additive method remains almost the same. 
A comparison of Figures 12 and 13 shows that if we 
consider MAD, the highest forecast accuracy can be 
achieved during the summer; but for the load forecast, the 
SARIMA model gives the best predictions. 
 

 
 

Fig. 9 Consumption forecast MAPE for all models 
 

 
 

Figure 10 Comparison of MAPE errors of day-ahead peak load 
predictions across all model and seasons data 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 97 NR 12/2021                                                                                        43 

 
 

Fig. 11 Generation forecast error in mean absolute deviation (MAD) 
 

 
 

Fig. 12 MAD error for consumption forecast 
 

 

 
Fig. 13 the consumption forecast for summer and autumn seasons 
plotted 
 
 Figures 14 and 15 show a comparison of observed/real 
load during a typical working day of the autumn and 
summer seasons, with all models for load and generation 
forecasts respectively. It can be clearly seen that the 
generation forecast is better achieved using the Holt-
Winters additive method during the autumn season. 
Whereas, the prediction made by SARIMA follows the 
observed value more closely as compared to the HWA.  

The results suggest that a single approach to forecast 
both load and RES generation is not as efficient as a 
combination of different approaches. The future of 
microgrids greatly depends on accurate forecasts and more 
research, which should consider a variety of upcoming 
technologies, such as electric vehicles. They need to be 
addressed as separate variables in the future studies. 
 
 

 

 
Fig. 14 Generation forecast for autumn and summer seasons 
 
Conclusion 

Forecast errors in microgrids are typically high as 
compared to centralised grids due to the uncertainties in the 
load behaviour and intermittency of the renewable 
generation. This paper investigated the accuracy of different 
statistical forecasting models for load and generation 
forecasts in a microgrid, and proposes a combination of 
different seasonal models to improve the forecast accuracy 
for the microgrid. Smart meter data from a real-world 
microgrid was used, having half-hourly data resolution, and 
a generation forecast of the PV generation was also 
performed.  

It was determined that the accuracy of prediction is 
highly sensitive to the variable selection and availability of 
historic data. The forecast results suggest that for load 
forecasting, the SARIMA model performs the best. 
Whereas, for generation forecasting, the Holt-Winters 
additive method achieved the highest accuracy for autumn, 
and for summer, SARIMA performed better. Future works 
could include the consideration of electric vehicles as 
separate variables, which again can be used as load as well 
as virtual power plants. 
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