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Abstract. The paper presents a very effective algorithm for stabilizing unstable periodic orbits, consisting of slight changes in selected parameters of 
a chaotic system at any time of sampling. Modification of the parameters leads to minimization of the distance of the phase trajectory from the fixed 
point on the cross-section of the generalized Poincaré map. By modifying several parameters, it is possible to effectively eliminate chaotic vibrations 
in complex non-linear dynamical systems in the presence of strong disturbances and noise. 
 
Streszczenie. W pracy przedstawiono efektywny algorytm stabilizacji niestabilnych orbit okresowych, polegający na niewielkich zmianach 
wybranych parametrów układu chaotycznego w każdej chwili próbkowania. Modyfikacja parametrów prowadzi do minimalizacji odległość trajektorii 
fazowej od punktu stałego na przekroju uogólnionego odwzorowania Poincarégo. Realizacja zagadnienia sterowania poprzez zmianę kilku 
parametrów umożliwia efektywną eliminację drgań chaotycznych w złożonych nieliniowych układach dynamicznych w obecności silnych zakłóceń i 
szumów. (Nowy algorytm multipunktowy służący do eliminacji drgań chaotycznych w złożonych układach nieliniowych). 
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Introduction 
Before chaotic systems were discovered, it was believed 

that the transient states of deterministic systems are 
predictable, i.e. knowing the mathematical description of  
a given system and initial conditions, its state can be 
determined at any time. However, it turned out that there 
are some systems with elements with specific non-linear 
characteristics which are characterized by strong sensitivity 
to initial conditions. Moreover, the courses of certain state 
variables of these systems resemble completely random [1-
5]. A rapid increase in the interest of research centres in the 
subject of chaotic dynamics could be observed over the 
past 30 years. This fact has been caused by the extensive 
use of computers to solve non-linear problems. An 
important factor that motivates the development of research 
related to chaotic dynamics is a rapid development of power 
electronics, which has contributed to the widespread 
installation of non-linear receivers in the power system. The 
use of such highly non-linear loads can have a negative 
effect on the supply network. At present, it can be estimated 
that the level of voltage and current distortion in electrical 
systems has exceeded the alarm threshold. In this regard, 
various countermeasures are being taken, which are aimed 
at preventing further increase in deformation [2, 4]. 
 Considering the fact that chaotic oscillations are usually 
unwanted, the question arises whether it is possible to 
eliminate these unfavourable vibrations and make a given 
chaotic system predictable. It turns out that the 
development of effective control strategies [4-15] is, apart 
from effective methods of predicting chaotic states [16-19], 
one of the most important problems that arises when 
analyzing chaotic phenomena. This problem is also 
revealed in plasma physics, in particular in research on 
effective control of an electric arc furnace [4, 5, 20-27]. In 
the initial stage of melting the load, the furnace is in a 
chaotic state, which is manifested by the continuity of the 
spectral characteristics of the currents drawn from the 
electrical grid. This is a particularly unfavourable 
phenomenon, because the occurrence of subharmonic 
vibrations may in many cases be dangerous for elements 
such as synchronous machines and transformers, as well 
as for the electrodes of the furnace due to the formation of 
mechanical resonances, which may cause serious failures 
in the supply system of the electric arc furnace [4]. 
Moreover, chaotic vibrations of low-frequency voltage and 
current waveforms, significantly exceeding the permissible 

standards in real systems of this type, have a negative 
impact on users connected in parallel. 
 The problems of controlling or elimination of chaos 
began to be dealt with as early as in the 1980s [1]. Due to 
the fact that chaos can appear in non-linear systems only, 
the control process is seriously hampered. Non-linear 
circuits are subject to neither the principle of proportionality 
nor the principle of superposition, and thus even relatively 
small changes in excitation can cause dramatic and 
unpredictable effects [2-5, 7, 12, 14, 28-35]. 
 Among many methods, the OGY method [14], which 
was presented in 1990 by Ott, Grebogi and Yorke, turned 
out to be a very important concept of controlling chaotic 
systems. This method involves small modifications in one of 
the parameters of the chaotic system to stabilize the 
unstable periodic orbit immersed in a strange attractor. The 
advantage of this concept is that no high energy 
expenditure is required to eliminate unwanted vibrations. 
The OGY method and the minimum distance method [7], 
presented by Galias in 1995, inspired the author to develop 
new multipoint method of controlling complex chaotic 
systems [4]. 
 
Multipoint minimum distance method 

Algorithms for stabilizing unstable periodic orbits in the 
single-point version [7, 14] are difficult to implement in real 
systems. This is because the system parameter is modified 
only once during the stabilized orbit period. Multipoint algo-
rithms presented in [7, 14] can also be unreliable, especially 
when controlling complex chaotic systems in the presence 
of strong disturbances and noise. Another limitation of the 
discussed methods is the modification of one control 
parameter only. Such algorithms can be used to stabilize 
chaotic systems of higher order in case when a fixed-point 
on the Poincaré section, corresponding to a given periodic 
orbit, has one unstable eigenvalue only [14]. When dealing 
with periodic orbits that have more unstable eigenvalues, it 
is necessary to modify more than one parameter to stabilize  
a given orbit immersed in a strange attractor.  

For these reasons, the author has developed a new 
effective multipoint algorithm [4], based on the minimum 
distance method developed by Galias [7], in which it is 
possible to modify several control parameters at any time of 
sampling. That is, depending on the implementation, the 
control parameters can be changed even several of 
thousands of times during the period of stabilized orbit. This 
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approach allows controlling complex chaotic systems in the 
presence of strong disturbances and noise.   

Let us consider an autonomous non-linear system, 
described by a system of ordinary differential equations of 
n-th order, which depends on k parameters p:  

(1)         
ௗܠሺ௧ሻ

ௗ௧
ൌ ۴ሺܠሺݐሻ,  ,ሻܘ

where F is a continuous vector field, ܠ ∈ ܘ ,܀ ∈  ,܀
wherein ݇  ሺ݊ െ 1ሻ. Let's assume that for the values of p = 
p0 the periodic orbit γ belongs to a strange attractor. We 
also assume that a small modification of parameters ઢܘೌೣ

:  

ܘ               (2) െ ೌೣܘ∆
 ܘ  ܘ  ೌೣܘ∆

 

does not lead to the disappearance of the attractor and the 
chosen periodic orbit. 
 In the case of the multipoint method, we do not 
permanently determine the position of the ∑i hyperplanes of 
general Poincaré map, but we dynamically determine the 
map at each sampling time which points from one 
hyperplane assigns to points from another hyperplane. 
Therefore, the problem of control consists in placing the 
hyperplane ∑i in such a way that the phase trajectory of the 
chaotic system intersects it transversally at the xPi at a 
specific sampling time. By Pi, we denote the general 
Poincaré map, defined in a certain point ۾ܠி environment, 

where the map depends on k parameters:     

:۾        (3) ሺିଵሻ܀ ൈ ܀ ∋ ሺ۾ܠ, ሻܘ → ,۾ܠሺ۾ ሻܘ ∈ ܀
ሺିଵሻ. 

Let ۾ܠி be the map's fixed-point (3) for parameter values  

p = p0: 

,ி۾ܠሺ۾                   (4) ሻܘ ൌ  .ிାଵ۾ܠ

Linear approximation of the general Poincaré map around 
the point (۾ܠி,  :ሻ can be presented in the following formܘ

,۾ܠሺ۾  (5) ሻܘ ൎ ۾ ቀ۾ܠி, ቁܘ  ۾۸ ቀ۾ܠ െ ிቁ۾ܠ  ۵ሺܘ െ  ,ሻܘ

where ۾ܠ ∈ ܘ ,ሺିଵሻ܀ ∈ ۾, ۸܀ ∈ ܀
ሺିଵሻൈሺିଵሻ, ۵ ∈  .ሺିଵሻൈ܀

The coefficients of the linear approximation (5) can be 
determined with high accuracy using numerical integration 
procedures [4]. We have obtained very good results using 
Runge-Kutta second-order algorithms. In the case under 

consideration ۸۾ ൌ
డ۾
డ۾ܠ

ሺ۾ܠி,  ሻ is a Jacobi's matrix of theܘ

general Poincaré map in point (۾ܠி, ሻ, while ۵ܘ ൌ
۾ࣔ
ܘࣔ
ሺࡲ۾ܠ,  ሻ is a matrix of partial derivatives of this map inܘ

relation to the set of p parameters.  
By using the Poincaré map, we reduce the size of the 

state space by 1, while remembering that the individual 
hyperplanes of the generalized map (3) are located along 
the xi direction. In accordance with the idea of the minimum 
distance method, we look for a value of the ܘ ൌ
ሾଵ ଶ …  ሿ் parameters to minimize the distance of
the trajectory from the fixed-point in each iteration of the 
general Poincaré map: 

(6)               ݀ሺ۾ሺ۾ܠ, ,ሻܘ ிାଵሻ۾ܠ ൌ min. 

Using linearization (5) and the definition of pseudo-inversion 
of the matrix [36] the value of the control parameters p for 
which: 

(7)             ቛ۸۾ሺ۾ܠ െ ிሻ۾ܠ  ۵ሺܘ െ  ሻቛܘ

reaches a minimum value, is: 

ܘ              (8) ൌ ܘ െ ሺ۵
்۵ሻିଵ۵

۾ܠ൫ܘ۸் െ  ,ி൯۾ܠ

where ۾ܠ, ி۾ܠ ∈ ܀
ሺିଵሻ, ܘ, ܘ ∈ ۾, ۸܀ ∈ ܀

ሺିଵሻൈሺିଵሻ, 
۵ ∈  .ሺିଵሻൈ. We assume that the rank of the Gi matrix is k܀
When we have (n - 1) parameters that are involved in the 
control process, i.e. k = (n - 1), formula (8) can be simplified 
to form: 

ܘ                    (9) ൌ ܘ െ ۵
ିଵ۸ܘ൫۾ܠ െ            .ி൯۾ܠ

 In the presented multipoint method, we modify the 
parameters at any time in accordance with (8) in the event 
that the distance of the trajectory from the point ۾ܠிon the 

Poincaré cross-section is less than the assumed value of 
dmax. Otherwise we set the control parameters to the 
nominal value of p0 and wait with the modification of 
parameters until the trajectory passes again close to one of 
the fixed points on the ∑i hyperplane, located in any area of 
the phase space within the chaotic attractor. On the other 
hand, if one of the control parameters calculated from (8) 
differs from the nominal value more than the acceptable 
change of a particular parameter ઢܘೕೌೣ

, then this 

parameter is set to the value  ൌ   Δೕೌೣ
 in the 

situation when ሺ െ ሻ  Δೕೌೣ
 or to the value  ൌ  െ

Δೕೌೣ
 in the case when ሺ െ ሻ ൏ ሺെΔೕೌೣ

ሻ, while the 

rest of the control parameters is set according to the 
relation (8). The elimination of chaotic vibrations with the 
use of the presented multipoint algorithm is possible when 
we have an appropriate analytical description of the position 
of an unstable periodic orbit in the phase space. This 
description is necessary to determine the location of the 
fixed points ۾ܠி on Poincaré cross-sections in the whole 

attractor space. Interested readers are invited to study the 
thesis [4]. 
 Due to the very small distances between the individual 
hyperplanes of the Pi map, the linear approximation (5) is 
very accurate in a long trajectory distance from a given 
fixed- point ࡼ࢞ி. This is an extremely advantageous 

property of the presented multipoint algorithm, because it is 
possible to significantly increase the dmax parameter, which 
affects the moment of starting the stabilization process. 
Moreover, the possibility of increasing the dmax parameter is 
of great importance in the case of stabilization of a selected 
unstable orbit in the presence of strong disturbances and 
noise. It is also worth emphasizing that the possibility of 
changing several parameters of the system allows the use 
of such control for any complex chaotic systems. 
 
Chaotic vibrations in Chua's circuit 
 The considered multipoint algorithm will be tested using 
the Chua’s circuit [2, 4, 5], which, due to its properties, is an 
extremely popular subject of research at scientific centres 
dealing with the problems of chaos theory. The vast 
majority of tests of the Chua circuit is carried out using the 
piecewise-linear characteristic of a non-linear element, and 
the research has shown that it is representative of other 
non-linear characteristics that may be smooth, and thus 
differentiable over the entire voltage range [2]. It is worth 
emphasizing that the results obtained during the simulation 
of this circuit are very similar to the results obtained on the 
basis of a physically realized experimental system. On the 
one hand, the not very complicated structure of the circuit, 
and on the other hand, the enormity of specific phenomena 
that can be identified in it, mean that the interest in this 
circuit is currently increasing and there are often 
descriptions that reveal many of unknown issues in the field 
of non-linear systems. With the appropriate selection of 
parameters, a full range of behaviours can be observed in 
this circuit that are characteristic of a wide class of non-
linear dynamical systems, namely: asymptotic stability of 
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the equilibrium state at a point, periodic oscillations, 
bifurcations and chaotic vibrations. Chaotic phenomena, 
which are generated in the considered circuit, can be 
described by the following system of differential equations: 

(10)                 

ௗ௨

ௗ௧
ൌ ଵ

మ
൬
௨భି௨

ோ
െ ݅ሺݑሻ൰

ௗ௨భ
ௗ௧

ൌ ଵ

భ
ቀ௨ି௨భ

ோ
 ݅ቁ

ௗಽ
ௗ௧
ൌ െ ଵ


ሺݑଵ  ܴ ⋅ ݅ሻ

, 

where the current-voltage characteristics of a non-linear 
resistor can be described by the following relationship: 

(11)   ݅ሺݑሻ ൌ ݑଵܩ 
ଵ

ଶ
ሺܩଶ െ ݑ|ଵሻሾܩ  |ݒ െ ݑ| െ |ଵܩ| ,ሿ|ݒ ൏  .|ଶܩ|

 In order to verify the effectiveness of the developed 
algorithm for stabilizing unstable periodic orbits, we have 
realized a series of numerical experiments using the 
MATLAB package. Fig. 1 shows the Chua's system 
bifurcation diagram obtained for the following set of 
parameters: C1=1000mF, C2=64.103mF, G1=-0.7143S, G2=  
-1.3429S, R=1, RL=0, v=1V. Solution with the following 
initial conditions: u(0)=2V, u1(0)=0.26V, iL(0)=1.9A, was 
obtained using the Ode23 numerical integration procedure. 
 

 
 

Fig.1. Chua's system bifurcation diagram 
 

 The above diagram shows diversity of Chua's circuit. As  
a result of changes in L parameter, a qualitative change in 
the system dynamics occurs. Initially, periodic oscillations 
are generated in the circuit. For L = 22mH, the phase 
trajectory attractor consists of a single periodic orbit. By 
increasing the bifurcation parameter, we reach the critical 
value L = 22.14mH, for which the oscillation period is 
doubled. At this point, as a result of bifurcation, the original 
stable orbit of period 1 is transformed into an unstable orbit 
of the same period and a stable orbit of period 2. Further 
increase this parameter leads to the transition of the system 
into a chaotic state as a result of bifurcation cascade of 
doubling the period [1, 2, 4]. Eventually, for L = 23.23mH, 
chaos arises in considered system.        
 Two types of strange attractors are characteristic for the 
Chua system, the Rössler-type attractor and the double-
scroll attractor [2, 4]. A characteristic feature of strange 
attractors is a fractal structure. They express the natural 
ability of dynamical systems to self-organize in such a way 
that their phase trajectories fill the phase space more or 
less evenly. Fig. 2a shows a strange Rössler-type attractor 
obtained for L = 23.81mH. It should be emphasized that 
such an attractor consists of an infinitely many unstable 
periodic orbits. Fig. 2b shows a phase portrait in order to 
better identify the location of the periodic orbit of interest, 

while Fig. 2c shows an unstable periodic orbit, immersed in 
the concerned attractor. The location of this orbit was 
determined on the basis of the location of pseudo-periodic 
orbits within the attractor [4, 7]. 
 Based on the bifurcation diagram, it is possible to select 
parameters of a given system in such a way as to obtain the 
desired behaviour, but this approach is not always possible. 
In such a case, an interesting alternative may be the use of 
developed multipoint algorithms of stabilizing unstable 
periodic orbits, consisting of small modification in selected 
parameters of the system, which leads to the elimination of 
chaotic oscillations.  
 

 
 
Fig.2. Chaotic phenomena of the Chua’s system: a) Rössler-type 
attractor, b) phase portrait of the Chua's system, c) unstable 
periodic orbit immersed in the attractor 

 
Stabilization of short periodic orbit 
 Elimination of chaotic vibrations in a given non-linear 
system, using the considered multipoint algorithm, consists 
in stabilization of a selected periodic orbit by small 
modifications in selected control parameters at each 
sampling time. The control process can be started when the 
trajectory passes close enough to the stabilized orbit. Fig. 
3a shows a trajectory of voltage u(t) obtained for the 
sampling period h = 0.001s and dmax = 0.01. The phase 
trajectory of the system after 9 s approached sufficiently 
close to the stabilized periodic orbit, which allowed the use 
of control procedure (Fig. 3b). In case of increasing the 



94                                                                                 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 97 NR 6/2021 

parameter dmax to the value 0.1, the control procedure could 
be started immediately (Fig. 3c – 3d). The obtained results 
clearly show the advantages of the developed multipoint 
algorithm. The high accuracy of the linear approximation (5) 
in the large environment of the fixed-point allows for a 
significant reduction of the control start time. In the absence 
of disturbances in the system, successful stabilization is 
possible even for a very small control signal. Modifying the 
control parameters at any time of sampling allows for the 
successful execution of the control process with a much 
larger allowable parameter change (ઢܘ   ). It isܘ0,1
extremely important when controlling complex chaotic 
systems in the presence of strong disturbances and noise. 
 

 
 
Fig.3. Stabilization of a short periodic orbit, immersed in a strange 
attractor: a), b) for dmax = 0.01; c), d) for dmax = 0.1 

 
 

Fig.4. Stabilization of vibrations in the Chua's system in the 
presence of strong disturbances: a) p = R; b) p = [R C1]

T; c) p = [R C1 
L]T 
 

 In order to investigate the effect of the strong 
disturbances on the quality of the stabilization, a quasi-
periodic voltage trajectory were connected in series with the 
coil [4]. The maximum permissible modification of control 
parameters was ઢܘೌೣ

ൌ  . Figure 4 shows a phaseܘ0.1
portrait in coordinates (u(t), u1(t)). In the case of modification 
of R parameter (Fig. 4a), stabilization was successful, 
however much better results were received when two 
control parameters p = [R C1]

T were changed (Fig. 4b). We 
managed to obtain the best results when changing three 
parameters  
p = [R C1 L]T (Fig. 4c). It should be noted that the trajectory 
would perfectly match the stabilized periodic orbit in the 
absence of any disturbances in the considered system. The 
advantage of the developed multipoint method is a 
possibility to change several control parameters, which 
allows for the effective elimination of chaotic oscillations in 
complex non-linear systems of higher orders. 
 In the case of controlling real systems, a very important 
aspect is the possibility of effective stabilization of the 
phase trajectory in the presence of noise. Fig. 5a - 5b 
shows the results of the elimination of chaotic vibration in 
the Chua's system in the presence of noise at the level of 
5%. 
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Fig.5. Stabilization of a short periodic orbit in the presence of 5% 
noise in the considered system: a), b) for h = 0.001s; c), d) for h = 
0.0001s 
 
 In the case under consideration, the modification of the 
control parameters p = [R C1]

T has been performed with the 
sampling step h = 0.001s. We have obtained much better 
results for h = 0.0001s (Fig. 5c – 5d). The high efficiency of 
the developed algorithms for the stabilization of periodic 
orbits is confirmed by the results obtained for the 
elimination of chaotic oscillations in the presence of 10% 
noise (Fig. 6). 

 
 

Fig.6. Stabilization of a short periodic orbit in the presence of 10% 
noise in the Chua's circuit: a), b) for h = 0.001s; c), d) for h = 
0.0001s 
 
 The presented multipoint method is effective even in the 
case of controlling the system in the presence of noise at 
such a high level (Fig. 6a - 6b). The reduction of the 
sampling step leads to a significant improvement in the 
quality of stabilization, which is confirmed by the phase 
portrait shown in Fig. 6d. The obtained results confirm the 
advantages of the multipoint algorithm developed by the 
author, in which we can modify several parameters at any 



96                                                                                 PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 97 NR 6/2021 

time of sampling. Frequent changes of control parameters 
are of great importance in the case of stabilization of a 
selected unstable periodic orbit in the presence of strong 
noise in a given system. 
 
Summary 

The advantage of the presented algorithm for stabilizing 
unstable periodic orbits is high efficiency and the ability to 
significantly increase the dmax parameter, which affects the 
moment of starting the control process. This procedure 
considerably reduces the transient process when the 
system is unstabilized and is of great importance when 
stabilizing the selected orbit in the presence of disturbances 
and noise. It is also very important that the period when the 
trajectory is uncontrolled is reduced to a minimum, because 
the change of parameters takes place at any time of 
sampling. Due to the possibility of frequent modification of 
the control signal, the linear approximation of the 
generalized Poincaré map is very accurate in the large 
environment of the periodic orbit, which allows the 
stabilization of selected unstable periodic orbits in the 
presence of very strong noise. In addition, the ability to 
change several control parameters allows the use of such 
control for any complex chaotic systems. 
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