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Detection of cardiac arrhythmias in body surface potential 
mapping (BSMP) measurements 

 
 

Abstract. The multitude of measurement data obtained from BSPM (Body Surface Potential Mapping) requires automatic detection and 
classification methods to detect disturbances. The article describes the method of classification of heart rate disorders based on the characteristics 
of signals from sensors. For the purposes of the research, a coefficient was created that allows the classification of cardiac arrhythmias in the BSPM 
measurements. In addition, BSPM signals were simulated using a system constructed for testing an innovative measuring vest with 102 measuring 
electrodes.  
 
Streszczenie. Artykuł opisuje problem klasyfikacji zaburzeń rytmu serca sygnałów otrzymanych z pomiarów BSPM. W pracy skonstruowano 
współczynnik mierzący dynamikę sygnału I sprawdzono możliwości klasyfikacji sygnału opartej na podstawie wyliczonego współczynnika. Pomiary 
na baize których dokonano analizy pochodzą z symulacji wykonanych na zaprojektowanym urządzeniu symulacyjnych powstałym w celu testowania 
innowacyjnej kamizelki pomiarowej BSPM ze 102 elektrodami. (Detekcja zaburzeń rytmu serca w pomiarach potencjału elektrycznego 
(BSPM)). 
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Introduction 
In diagnosing heart rhythm disorders, a frequently used 

tool is the study of potential maps on the human body. In 
the ECG, an electric potential at 10 leads/electrode points 
studies, based on which the specialised staff determines 
whether abnormalities indicating the disease occurrence 
could be observed in the signal. In some disorders, the 
duration of the ECG examination, which usually lasts 
several minutes, does not allow the observation of the ECG 
signal distortions based on which the disease could be 
diagnosed. In such cases, the measuring electrodes are 
attached for a more extended period, and the patient is 
equipped with a portable device (holter), that monitors the 
heart rate over a more extended period. Therefore, there 
are problems with automatic detection of the measuring 
signal [2,3] and measurement uncertainty related to the 
attaching of electrodes or interference factors such as 
detachment of measuring electrodes or electrostatic friction 
of clothes. In order to improve the measurement system, a 
more accurate analysis is applied by wearing a vest 
equipped with 62 or 102 electrodes. Afterwards, the 
electrical potential is tested on the entire surface of the 
patient's torse. Such measurements are referred to in the 
literature as Body Surface Potential Mapping (BSPM). This 
method of heart rate monitoring was already carried out in 
the 1960s [1]. However, due to the level of technology, 
analysing such a complex signal was limited. Over the last 
few years, the development of computer technologies and 
computational capabilities has made that BSPM diagnostics 
has been the subject of many scientists' research and is 
presented in many scientific publications [4-13]. 

The use of the technique based on BSPM with 102 
electrodes is a significant advance to standard 
electrocardiographic examinations based on 3 to 12 
channels. Essential for the expansion of myocardial 
diagnostics are the data from electrodes placed at the heart 
level. The use of a row of electrodes allows simulating 
precordial leads (the place where the electrodes from our 
diagnostic device correspond to the suggested location [14] 
along with an increase in the surface of these electrodes on 
the patient's back). In addition, electrodes placed on the 
surface of the human back allow the data acquisition on the 
electrical conductivity of the back walls of the heart 
ventricles. It is essential for diagnosing changes in this 

area, such as ischemic heart disease or old myocardial 
infarction. Having multiple electrodes placed at different 
heights around the heart gives invaluable help in tracking 
the electrical impulse conductivity within that organ. 

This paper deals with the problem of classifying cardiac 
arrhythmias based on the characteristics of the signal 
obtained from BSPM measurements. For the classification 
algorithm, the dynamics coefficient was created. 
 
Material and methods 

The simulation system was designed for research on the 
structure of the BSPM vest. The BSPM measurement vest 
consists of 102 electrodes made of a conductive textile 
material embedded in silicone, connected to the measuring 
system with a ribbon. Obtaining good pressure allowed for 
better contact with the body and thus for better data 
readings. The vest was designed by Netrix company and is 
an innovative solution on a global scale [15,16]. 

The simulation experiment consisted of collecting 
appropriate data from devices adapted to generate the 
simulation: The ProSim 4 ECG simulator was used to 
generate a stimulation signal of disorders and the normal 
heart cycle; The phantom converts the 10-lead ECG 
simulator signal to 102 BSPM distributions; Multiplexer 
systems connected in series with each other using FFC 
tape; A controller system, designed to amplify the signal 
and convert it from analog to digital signal.  

The simulation system is presented in Figure 1. 
 

 
 
Fig. 1. BSPM simulation system with connected ECG simulator. 
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The phantom has 102 leads connected to the ProSim 4 
ECG simulator. It is used to generate an ECG signal. The 
simulator can generate a standard ECG signal, slow heart 
rate up to 30 BPM, increased heart rate up to 300 BPM and 
disorders such as atrial fibrillation, premature ventricular 
contraction, ventricular tachycardia, ventricular fibrillation, 
transvenous pacer pulse, second-degree AV block, third-
degree AV block. The board is designed to convert the ECG 
signal, using a network of resistors, into a BSPM signal and 
transfer it to the multiplexer system using FFC tapes. Each 
board has been designed to be given any address from the 
range 0-7 to connect up to 8 plates in series, providing up to 
128 measurement channels. Each measurement channel 
has an independent forming and pre-filtration system so 
that the signal given to the analog keys has a many times 
greater signal-to-noise ratio than the signal directly 
measured. Additionally, due to the use of input blocks, the 
maximum input impedance of the measuring system was 
ensured. Multiplexers connected in series using FFC tapes 
collect the signal to the controller system, where the signal 
is converted into a digital signal, which, after connecting to 
a computer  via  USB p ort,  can save it to the hard drive. 
Fig 1.  

The simulation system consists of elements: a 
simulation plate with 102 measuring points and a plate 
allowing mechanical integration of measuring electrodes 
with the simulation Phantom. For this purpose, an 
integrated circuit of 16 channels was created. Furthermore, 
as a control element, a snap board system for the discovery 
development board was constructed, ensuring the 
integration of measuring electrodes with the control system. 
In addition to the integration function, the overlay on the 
discovery board includes a Wilson reference voltage source 
which, depending on the needs, can be used as a reference 
voltage signal for signal processing systems, a virtual 
reference voltage source, a 50Hz middle filter, and control 
signal amplifier buffers.  

The Fluke ProSim 4 ECG signal generator was used as 
the test signal source at the design stage, which generates 
signals similar to those measured in real conditions, with a 
similar level and type of noise as in the case of a real 
object. Thanks to the available modes, this simulator allows 
(in addition to checking the correctness of operation) to 
perform tests for various pulse frequencies and simulate 
many different cardiovascular diseases. The experiment 
collected appropriate simulation data, and each 
measurement of standard myocardial work together with the 
abnormalities was performed at one-hour intervals. 

Signal simulations were performed with the following 
disturbances: Atrial fibrillation, Bradycardia, Normal signal. 

The numbers of measuring signals from each category 
are in Table 1. fragments of the analysed signals are 
presented in Figures 2-4. 

 
Table 1. The number of samples of measuring signals with 
particular disturbances. 

Type of disturbance Sample size 

Artial Fibrilation 
(AFib_Fine) 

756885 

Bradycardia 
(Bradycardia_30bpm) 

810329 

Signal without disturbances 
(Normal) 

716120 

 
In the graphs (Fig. 2-4), the measurement results for 

individual disturbances are characterised by variable 
dynamics and amplitude. 

Sampled signal values were obtained from the 

measurement simulations 𝑋௞
௝
 from individual channels 

ሼ𝑥௜
௝ሽ, i=1,…,n െ sample item number, j=1,…,102 channel 

number, k=1,…3 െ  type of disturbance. The sampling time 
was 4 ms. 

 
Fig 2. Part of the signal with the AFib_Fine disturbance from the 
first channel. 

 Fig. 3. Part of the BSMP signal with Bradycardia_30BPM 
disturbance from the first channel. 

 
Fig.4. Part of Normal signal without disturbance from the first 
channel. 

For the research, a coefficient was also developed, 
which allowed examining the signal dynamics - this 
coefficient is defined by the formula (1) 

(1) 𝑑௦,௜
௝ ൌ

1
𝑉𝑎𝑟ሺ𝑋௝ሻ

෍ ห∆ሺ𝑥௡
௝ሻห

௡೔ା்ିଵ

௡ୀ௡೔

,  

where ∆൫𝑥௡
௝ ൯ െ is the discrete differential of the signal 𝑋௝ at 

the appropriate time slot T. 
Whereas 𝑉𝑎𝑟൫𝑋௝൯ െ is the signal variance calculated for 

the j-th channel from the entire time course. 
This coefficient examines the dynamics of the signal. It 

allows for the calculation of the total speed of change to the 
changes in amplitude. It is standardised by signal variance 
to provide the coefficient values with a smaller spread within 
given disturbances.  

In the beginning, the optimal time window for which the 
above coefficients have the best properties was 
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determined. Then, time slots of 10 seconds, 20 seconds, 40 
seconds, 80 seconds, and 160 seconds were analysed. 

Then, the classification possibilities were analysed using 
the above coefficients for individual channels and the value 
of the summed dynamics index. Many different algorithms 
are used to solve optimisation problems [17-26]. The 
method used for classifying without supervising learning is 
cluster analysis using the k-means method with euclidean 
metrics. 

The calculations were performed in the R environment 
using packages dplyr, pracma, tidyverse, cluster, jpeg, 
corrplot, pkgconfig. 

 
Results 

From the determined coefficients calculated for different 
lengths of the time window, it can be observed that the 
obtained coefficients stabilise within individual groups of 
disturbances for the dynamics factor with the lengthening of 
the time window. Therefore, the optimal time slot with a 
length of 160 seconds was selected for the analyses in 
terms of classification analyses. A time window of 160 
seconds both reduces the size of the data and provides a 
sufficient sample size for accurate classification of the 
measurement signal. For 102 measurement channels, the 
dynamic coefficient values were calculated with a length of 
160 seconds, and 17 values of the dynamic for each signal 
type were obtained. 

The diagram for the summed up the dynamic coefficient 
for the group of disorders is in Figure 5. The diagram of the 
dynamic coefficient for 27 channels is in Figure 6. 

 
Fig. 5. Diagram of the summed up dynamic coefficient for the group 
of disorders from left AFib_Fine, Bradycardia, Normal. 

 

Fig. 6. Diagram of the dynamic coefficient (channel 27) for the 
group of disorders from left AFib_Fine, Bradycardia, Normal. 
 

The analysis carried out showed the differentiation of 
the values of the coefficients in particular groups. 

In order to check the classification possibilities of the 
dynamics coefficient, the grouping of the coefficient values 
was checked using the k-means cluster analysis method. 

There are poor classification properties for channels 26-
35, 42-43, 67-77. Figure 6 shows the dynamic coefficient for 
channel 27. For the other channels, the classification 
coincides with the disorder groups, in particular for 
Bradycardia. The dynamic coefficient summed up across all 
channels has the best classification properties in Figure 5. 

For the summed dynamic coefficient, a classification 
possibility study was performed. For this purpose, the 
classification method without a teacher of k-means cluster 
analysis with Euclidean metric was used. The number of 
classes k=3 was assumed. Figure 7 shows the results of 
clustering the values of the summed dynamic coefficient. 

 

 
Fig. 7. Classification diagram using the k-means method with a 
given number of classes k = 3 for the summed up dynamics 
coefficient for the group of disorder 1. Normal, 2. Bradycardia, 3. 
AFib_Fine 
 

As shown in Figure 7, except for one value for the 
normal signal, the algorithm correctly classified all values. 
The classification results are also presented in the 
confusion matrix Table 2.  

 
Table 2. Confusion matrix 

 Cluster label 
 AFib_Fine Bradycardia Normal 

AFib_Fine 17   
Bradycardia  17  

Normal 1  16 
 
From the confusion, the matrix can be calculated that 

the correctness of classification is 98% for the summed 
index. Thus, it confirms the high classification potential of 
the dynamics factor in detecting cardiac arrhythmias from 
BSPM measurements. 

 
Conclusion 

The paper analyses the classification possibilities of the 
dynamics factor in the automatic detection of cardiac 
arrhythmias. The study was carried out on simulation data 
obtained from a specially designed simulation system for 
the innovative BSPM measuring vest. Three types of 
signals were tested: Normal signal and two disorders, Atrial 
fibrillation and Bradycardia.  

This paper proposes the construction of a dynamic 
coefficient that measures the amplitude of a signal and its 
dynamics simultaneously. To improve the classification 
capabilities of the coefficient, the values are normalised by 
the variance of the signal. 

A cluster analysis method with the Euclidean metric was 
applied to test the proposed coefficient's classification 
capabilities. Cluster analysis is a method without a teacher 
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and allows to check if the values assigned to the groups by 
the algorithm coincide with the apriori determined values. 

The k-means cluster classification method obtained that 
the summed up dynamics coefficient from all channels had 
the best classification properties.  

The coefficient proposed in this paper gives the 
possibility for the correct classification of signals coming 
from BSPM measurements. It can be used as a value to 
base the learning of artificial intelligence algorithms such as 
neural networks, classification trees, support vector 
machines, etc. 
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