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Cryptanalytic attacks on RSA algorithm and its variants 
 
 

Abstract. The goal of this paper is to provide a review of principles and techniques used in public-key cryptanalysis with special attention on RSA 
algorithm. The ways to defend against attacks on RSA algorithm are suggested. Furthermore, we provide a retrospective of results obtained during 
the research separately treated in the final part of the paper through the description of brute-force, low-exponent attack, chosen-plaintext attack and 
timing attack.  
 
Streszczenie. Celem tego artykułu jest przedstawienie przeglądu zasad i technik stosowanych w kryptoanalizie klucza publicznego ze szczególnym 
uwzględnieniem algorytmu RSA. Sugerowane są sposoby obrony przed atakami na algorytm RSA. Ponadto przedstawiamy retrospektywę wyników 
uzyskanych podczas badań oddzielnie potraktowanych w końcowej części artykułu poprzez opis ataku brute-force, ataku o niskim wykładniku, ataku 
z wybranym tekstem jawnym i ataku czasowego.  (Ataki kryptoanalityczne na algorytm RSA i jego warianty) 
 
Keywords: public-key, RSA, cryptanalysis, attacks. 
Słowa kluczowe: kryptografia, RSA, ataki kryptograficzne. 
 
 
Introduction 

De-facto standard used as a strong 
encryption/decription and digital signature scheme in 
securing network communication is RSA public key 
cryptosystem. This public key cryptosystem enables 
practical way for maintaining privacy and integrity of 
information. Lots of cryptographic algorithms are designed 
to make the critical transactions secure. Among them, RSA 
has been the most popular cryptographic algorithm. The 
simplicity and effectiveness of this algorithm makes it more 
attractive to the security providers. The security of this 
algorithm lies in computing the factors of a large composite 
integer. Currently 1024 bits (for non-critical information) and 
2048 bits or above (for critical information) composite 
integer is used to achieve desired security level. The 
workload of factoring a 1024-bit composite integer is 

assumed to be as complex as workload of 2଼଴ instructions 
which is the current benchmark used in cryptography (likely 
to increase in future). 

In RSA [1] public and private keys are calculated as 
inverse of each other. Private key can also be used by the 
sender to generate the digital signatures. Anyone who 
knows the public key of the sender can verify the message. 
If the message is intended for the particular receiver, the 
user applies the receiver’s public key on the message.  

Due to the use of keys of large size, involved 
computations are increased. The use of keys of large size 
becomes bottleneck if the system is working on small 
device or heavily loaded systems. Consequently, the 
demand of the cryptosystem with fast computations arises. 

The public key cryptography concept is to avoid the prior 
distribution of the shared encryption key. For this purpose, 
two keys are used for communication, one key is public 
known to everyone (public key) whereas the other is kept as 
secret (private key). These keys should be computed such 
as to use one key for encryption (public key) and the other 
key for decryption (private key).  

So far, the most effective attack against RSA algorithm 

has been the factorization of the number 𝑛 which represent 
modulus used for factorization. This modulus is product of 

two chosen prime numbers ሺ𝑝, 𝑞ሻ. If the attacker factorizes 

𝑛, he can easily discover that 𝜑ሺ𝑛ሻ ൌ ሺ𝑝 െ 1ሻሺ𝑞 െ 1ሻ  

as well as the way to define the secret exponent 𝑑 from 

𝑑 ≡ 1ሺ𝑚𝑜𝑑𝜑ሺ𝑛ሻሻ by using the Euclidean algorithm. 
The safety of the RSA algorithm lies in the factorization. 

Namely, at the factorization of 𝑛 which has over 200 
decimal digits with the primitive method of dividing all 

simple numbers smaller than √𝑛 , with the help of a 

computer, which is able to perform 10ଽ divisions of this 

kind in one second, about 10଼ଵ years is needed for the 
factorization. Up to now the fastest algorithms need 

𝑂ሺ𝑒௖ሺ௟௢௚௡ሻభ/య௖ሺ௟௢௚௟௢௚௡ሻమ/య
ሻ operations for the 

factorization, which means that polynomial algorithms is 
unknown for the factorization. It is important to highlight that 

there are cases when 𝑛 is easier to factorize than it would 

normally be. This is the case when the numbers 𝑝 and 𝑞 

are very close to each other or if 𝑝 െ 1 and 𝑞 െ 1 have 
small simple factors. These cases should be avoided while 
choosing the parameter for the RSA’s encryption system. 

Although, the attack based on the attempts to calculate 

ሺ𝑝 െ 1ሻ 𝑥 ሺ𝑞 െ 1ሻ, is possible, the time complexity of 
this attack is not easier than the previous one described 

before. It is possible to search directly for the number 𝑑, but 
it has been proven that this procedure is more complex than 
the previous possibilities described above. 

There are two types of factorization method, general 
purpose and special purpose. General purpose factorization 
methods depends on the length of the number to be 
factored while special purpose factorization methods 
depend on the length of the smallest factor of the number to 
be factored. There are many factorization methods 
available in literature: 

 Division Method - represents the oldest and the 
least effective method, but implies the try out of all primitive 

numbers smaller or equal to 𝑛
భ
మ (the exponential 

complexity), 
 Fermat’s Method - the complexity of this method is 

sub exponential numbers of bits, 

 Pollard 𝑝 െ 1 Method, 

 Pollard 𝑟ℎ𝑜 Method, 
 Continued Fraction Factorization Method,  
 Quadratic Sieve Method - the fastest algorithm for 

the numbers smaller than 100 decimal digits, 
 Number Field Sieve Methods (NFS), and 
 Elliptic Curve Factorization (ECM). 
After the study of different methods it is clear that the 

complexity of general purpose methods is exponential or 
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sub exponential in the size of the number to be factored. 
NFS method can be used to factor small number, and 232 
digit number is the largest factored number by this method 
till 2009 [2]. On the other hand, complexity or special 
purpose methods is exponential or sub exponential to the 
size of the smallest factor of the number to be factored. 
ECM is the best example for this type of numbers, 83 digit 
number is the largest factor computed in 2013 by this 
method [2]. The above-mentioned methods represent the 
best options for the attack on the RSA algorithm. 

Table 1 shows the time in relation to the length of the 
code needed for a computer with 1 MIPS speed to reach 
from the public key to the secret key.  

 
Table 1. Time needed to calculate the secret key from the public 
one 

Length of the key in 
bits 

Time needed 

50 3,9 hours 
100 74 years 
150 10଺ years 
200 3,8 ∙ 10ଽ years 

 

 In this paper we provide a review of principles and 
techniques used in cryptanalysis of RSA algorithm along 
with coutnermeasuers and pitfalls that should be avoided. 
Inspecting flaws using weak public/private keys, integer 
factorization problem and some specific low parameter 
selection attacks can exploit possible vulnerabilities, where 
we give more deep unterstanding about underlying 
mathematics and proper parameter selection. It can be 
shown that a well implemented algorithm is unbreakable 
and can survive a number of cryptanalytic attacks. In 
Section 2 of the paper we provide a short description of 
elementary attacks carried out on the RSA with basic 
mathematical concepts behind. Section 3 provides user with 
contemporary network communication interception attacks 
as well as ways how to defend against them and how to 
properly implement variants of RSA algorithm. Finally, 
conclusions and future remarks are given at the end of the 
paper. 
 

Mathematical concepts of elementary attacks 
Cycling attack 

In 2018, Ye, Liu and Gardner [3] showed that repeatedly 
encrypted text can be deciphered  again (after a + 1 
encryption steps), and the original text found before this 
cipher text is the actual message (after a encryption). For 
small messages, a is very small. In 2017, Barak [4] 
generalized the cycling attack. Overmars and Venkatraman 
[5] in 2020 showed that for balanced primes and sufficiently 
large modulus, cycling attack becomes ineffective. The 
experimental results obtained during implementation of this 
attack are shown in Table 2. These results reveal little 
dependence on modulus N.  
 
Table 2. Cycling attack’s experimental results 

Size of N 
Average running 
time (seconds) 

8 0,000012 
16 0,000010 
32 0,000008 
64 0,000010 

128 0,000011 
256 0,000013 
512 0,000011 

1024 0,000011 
2048 0,000016 
4096 0,000015 

Common modulus attack 
Common Modulus attack is applicable in scenarios 

where the central authority distribute private and public 
exponents to the users. All users share common modulus 

without the knowledge of the prime factors. So, if 𝑑 has 
somehow been leaked, the only work is to generate another 

private key from same 𝑁 and prime factors. In 2010, 
Simmons [6] showed that the message can be recovered if 
the same plaintext is encrypted with two different and 
relatively prime public exponents with the same modulus. In 
2018, Ye, Liu and Gardner [3] showed the failure of 
common modulus RSA deterministically. They proved that 
the user can recover other’s private key in the group with 
the use of his pair of public and private key. This attack is 
not applicable for a single user with multiple instances with 
the same modulus. In 2015, Peng at al. [7] described the 
strongest common modulus attack (single user) with a small 

private exponent. For two instances of 𝑒 and 𝑑 with same 

modulus, the security can be broken if ൏ 𝑁
ఱ

భర . For more 
than 7 instances with the same modulus the bound 

becomes ൏ 𝑁
భ
మ . [8] 

 

Attacks in polynomial time 
Takayasu and Lu at al. [9] [10] proved that the message 

𝑀 can be computed in polynomial time. In 2017, Boudabra 
[11] generalized this attack and proved that with small 
public exponents and different moduli which related to each 

other by some known function 𝑓ሺ𝑥ሻ and the number of 

users that are greater than max ሺ𝑒௜ ∙ 𝑑𝑒𝑔𝑟𝑒𝑒ሺ𝑓௜ሺ𝑥ሻሻ, 

plaintext 𝑀 can be computed in polynomial time. 
If we assume that data that are depending on the user is 

added before the encryption at the beginning of each 
message, they can be represented with following equation 
 

(1)                   .,...,1,mod2 kinmic i

eh
i   

 

𝑘 can be represented as polynomial 

    i

eh
i cxixg  2

 while 𝑚 has following 
characteristic 
 

(2)                   
   1mod0 nmgi 

 
 

If knnnn ...21
, by using the Chinese remainder 

theorem we can find 𝑡௜  so that 

   



k

i
ii xgtxg

1 and    nmg mod0  
    jiii ntnt mod0,mod1   for ij   

The polynomial 𝑔 is normalized and if 𝑘 ൐ 𝑒; i.e. if we 
have several users (intercepted ciphertext), the public 

exponent, than 𝑚 ൏ 𝑚𝑖𝑛௜𝑛௜ ൏ 𝑛
భ
ೖ ൏ 𝑛

భ
೐, so 𝑚 can be 

effectively found by using the mentioned Padmaja’s result. 
[12] 

The best case is, if the figures are of the same width as 
the column – 8 cm. The letters in the figures should be not 
smaller than 2 mm. Figure 1 presents an example of a 
graph. 
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Small exponent e attack 
Small public exponent is always attractive for the low 

cost involved in the cryptosystem. It appears that, if the 𝑒 is 
relatively small, it does not influence the safety of the RSA 
algorithm itself. If the exponent for the ciphering is small, 
the operation of ciphering is much faster. The only 
drawback of the usage of the small exponent is visible in 
the ciphering of short messages. When the exponent is 
chosen, we assume that we have three users with various 

values of the public module 𝑛ଵ, 𝑛ଶ, 𝑛ଷ  and that they use 

the same public exponent 𝑒 ൌ 3. After that we assume 
that someone wants to send an identical message  . If we 
have already seen that any relatively simple exponent with 

𝜑ሺ𝑛ሻ is fine, than we can easily choose 𝑛 ൌ 𝑝𝑞 so that 

the number 3 is a relatively simple number ሺ𝑝 െ 1ሻ ∙
ሺ𝑞 െ 1ሻ ൌ 𝜑ሺ𝑛ሻ. Now the encryption of 𝑚 message is, 

𝑚ଷ𝑚𝑜𝑑 𝑛 . Only in this case the attacker can discover 
the following ciphertext  
 

(3) 𝑐ଵ ≡ 𝑚ଷሺ𝑚𝑜𝑑 𝑛ଵሻ, 𝑐ଶ ≡ 𝑚ଷሺ𝑚𝑜𝑑 𝑛ଶሻ, 𝑐ଷ ≡
𝑚ଷሺ𝑚𝑜𝑑 𝑛ଷሻ 
 

After that, the attacker can find the solution of the 
system of linear configurations by using the Chinese 
remainder theorem 
 

(4)  

𝑥 ≡ 𝑐ଵሺ𝑚𝑜𝑑 𝑛ଵሻ, 𝑥 ≡ 𝑐ଶሺ𝑚𝑜𝑑 𝑛ଶሻ, 𝑥
≡ 𝑐ଷሺ𝑚𝑜𝑑 𝑛ଷሻ, 

 

In this way the attacker will get the number 𝑥 with the 
characteristic 
 

(5)                      𝑥 ≡ 𝑚ଷሺ𝑚𝑜𝑑 𝑛ଵ𝑛ଶ𝑛ଷሻ 
 

However, having in mind that 𝑚ଷ ൏ 𝑛ଵ𝑛ଶ𝑛ଷ is equal 

to 𝑥 ൌ 𝑚ଷ, than the attacker can calculate the original 

message 𝑚 and discover √𝑥య
 . 

This attack has been described by Coopersmith, 

Franklin, Patarin and Reiter [12]. They claim that 𝑚 could 
be discovered in following manner. If we have the following 
ciphered text: 
 

(6)                        
3

1 mc   

 (7)    1331331 2
1

233
2  mmcmmmmc  

 

m can be obtained as: 
 

(8) 

 
 

m
mm

mmm

mm

mm

cc

cc













333

333

21

121

2

12
2

23

33

33

12

12

 
 

This can be generalized. First we can generalize the 

message 𝑚 and 𝛼𝑚 ൅ 𝛽 for the known 𝛼, 𝛽. Secondly, it 
works for the exponents bigger than 3. The attack works in 

the timeframe 𝑂ሺ𝑒ଶሻ and it is possible for small exponents 

too. Finally, it can work for 𝑘 messages related to the 
higher degree of polynomials. 

Another way is - if we choose number 3 for 𝑒 and if we 

take 𝑀 ൏ 𝑛
భ
య (the message shorter than √𝑛య

 ), the 

message can be easily decoded by the operation 𝑀
భ
య ∙

√𝑀య
 as: 

 
33 mod MnM   , if 

3/1nM   
i.e. MnM  3/1

 
 

Generation and verification of the signatures with the 
help of the RSA algorithm is faster if the small value is used 

for 𝑒, but it can be uncertain as well. If we want to code 
௘ሺ௘ାଵሻ

ଶ
 of the linear dependent messages with different 

public keys which have the same values 𝑒, the system 
became vulnerable. On the other hand, if the message 
consisted of small numbers or they are not related, 

problems are avoided. If the messages are identical, the 𝑒 
message is sufficient. 

In 2016, Savić and Damjanović [13] showed that if two 
plaintexts related with some function (with known constants) 

are encrypted by same small public exponent ሺ𝑒 ൌ 3ሻ, 
then the plaintext can be computed in polynomial time.  

Wang at al. [14] proved that for small 𝑒, 𝑘଴ in the RSA 

equation can known (since 𝑘଴ ൏ 𝑒). This gives the 
information about the most significant bits (MSBs) of the 

private exponent; few bits (say 𝑑ଵ) can be known where 

𝑑 െ 𝑑ଵ ൏ 𝑝 ൅ 𝑞. It means one can get half of the MSBs 

of 𝑑 for balanced primes. For 𝑒 ൌ 3, it is very simple to 

guess the value of 𝑘଴. Also, if one knows the bits of 𝑑, 𝑘଴ 
can be recovered easily. This attack is not the total failure of 

the cryptosystem. He signifies that small 𝑒, half of the MSB 

of 𝑑 can be made public.  
Also, Takayasu and Kunihiro in 2017 described [15] 

attacks which belong to this type of the attacks. They are 
based on the Coppersmith's technique which uses LLL-
algorithm for calculating the small roots of modular 
polynomial equations. These attacks are »heuristic«, and in 

practice they reach satisfactory level if 𝑑 ൏ 𝑛଴,ଶଽଶ. It is 

believed that the secret exponent 𝑑 ൐ √𝑛 should be used, 
as it is known that all the above-mentioned attacks are 
completely useless otherwise. 
 
Small exponent d attack 

As the public and private exponents are inverse of each 
other, one can get small private exponent by selecting the 
large public exponent. If someone requires the fast 
decryption speed, small secret exponent is required. But 
very small secret exponent can break the complete system. 

In 2015, Peng at al. [7] gave the attack for balanced 
primes with small private exponent. In this kind of attack, 

the 𝑑 is reconstructed, where 𝑑 could reach maximum of 

one fourth of  𝑛, while 𝑒 is less than 𝑛. 
 

(9)                                    1 nked   
 

(10)                       
 

n

e

d

k
nn 

 

If pqp 2 . If 

25,0

3

1
nd 

, than 
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(11)                       
22

1

dn

e

d

k


 
 

According to the classical Legendre’s theorem from 

Diophantine approximations, 𝑑 must be the directory of a 

convergent 
௣೘

௤೘
 in the development of the continued fraction 

of the number 
௘

௡
 , so that 𝑑 can be effectively calculated 

from the public code ሺ𝑛, 𝑒ሻ. The number of convergent in 

total is 𝑂ሺlog 𝑛ሻ, while each convergent can be tested in 
polynomial time. 

In 2015, Meng and Zheng [16] extended the Wiener’s 
bound using exhaustive search. This type of attack is 

applicable when 𝑑 has several more bites than 𝑛଴,ଶହ. For 

𝑑 ൐ 𝑛଴,ଶହ, their attack uses the search by brute force for 

2𝑡 ൅ 8𝑏𝑖𝑡𝑠 with certain assumptions to partial quotient in 

a continued fraction, where 𝑡 ൌ 𝑙𝑜𝑔ଶ ቀ ௗ

௡బ,మఱቁ. 

In 2020, by lattice method, Bahig at al. [17] rigorously 
proved that RSA modulus with balanced primes can 

factored in polynomial time if 𝑑 ൏ ଵ

ଷ
𝑁

భ
ర. Furthermore, 

Asbullar at al. [18], extended the work of Meng and Zheng 
[16] for Wiener’s bound. In 2019, Susilo, Tonien and Yang 
[19] proposed a variant of Wiener’s attack which is having 
less time and space complexity as compare to the Wiener’s 
method. 

In 2019, Nitaj, Susilo and Tonien [20] claimed that 
Vorli's result is the best possible one, in the sense that the 

condition 𝑟𝑠 ൏ 2𝑐 cannot be replaced by 𝑟𝑠 ൏ ሺ2 െ
𝜀ሻ𝑐 for ൐ 0 . 

In both mentioned expansion of the Winner's attack, 
candidates take the form of 

 

(12)                       mm sqrqd  1  
 

All the possibilities for 𝑑 are tested, while the number of 
all the possibilities is roughly speaking (the number of 

possibilities for 𝑟) 𝑥 (the number of possibilities for 𝑠), 

which is 𝑂ሺ𝐷ଶሻ , where 𝑑 ൌ ௗ

௡బ,మఱ . 

More precisely, the number of possible couples ሺ𝑟, 𝑠ሻ 

in Verheul - van Tilborg attack is 𝑂ሺ𝐷ଶ𝐴ଶሻ, with 
 

(13)        
 3,2,1:max  mmmiaA i  

 

while in Duella's variant from 2004 is 𝑂ሺ𝐷ଶ𝑙𝑜𝑔𝐴ሻ. 
The new modification of the Verheul - van Tilborg attack 

was proposed by Santosh, Narasimham and Pallam in 2015 
[21]. This modification requests heuristic search by brute 

force for 2𝑡 െ 10 bits, so its complexity is also 𝑂ሺ𝐷ଶሻ. 
They gave their analysis on improved bounds for private 
key exponent. In 2021, Mumtaz and Ping [22] presented a 
lattice-based attack for large values of private exponent 

close to 𝜆ሺ𝑁ሻ. The modulus can be factored if 𝑑 satisfies 

|𝜆 െ 𝑑| ൏ 𝑁଴,ଶହ. 
 

Contemporary attack review 
Choosen ciphertext attack 

A chosen-plaintext attack is called adaptive if the 
attacker can choose the ciphertexts depending on previous 

outcomes of the attack. It is well known that plain RSA is 
susceptible to a chosen-ciphertext attack. [23]  

The attacker taps the communication channel over 
which the RSA coded messages are exchanged and 

discovers the message 𝐶, i.e. which mathematically 
rewritten looks like: 

 

(12)          𝑀 ൌ 𝐶ௗ𝑚𝑜𝑑 𝑛               
 

With the assumption that attackers know the public key 

ሺ𝑒, 𝑛ሻ, in order to obtain 𝑀 the attacker first chooses a 

random message 𝑅, where 𝑅 ൏ 𝑛, and than codes the 
message with the public key: 
 

(13)          𝑋 ൌ 𝑅௘𝑚𝑜𝑑 𝑛                
 

Ciphertext message 𝐶 is multiplied by using the 𝑋: 
 

(14)    𝑌 ൌ 𝑋 ∙ 𝐶 𝑚𝑜𝑑 𝑛                 
 

Also, the attacker calculates the modular inverse values 

from 𝑅: 
 

(15)       𝑇 ൌ 𝑅ିଵ 𝑚𝑜𝑑 𝑛                  
 

The attacker assumes that: 
 

(16)         𝑋 ൌ 𝑅௘ 𝑚𝑜𝑑 𝑛                   
 
and 
 

(17)         𝑅 ൌ 𝑋ௗ 𝑚𝑜𝑑 𝑛                    
 

Attacker must wait for the user to digitally sign 𝑌 with 

his private key, which is how he effectively decodes 𝑌, and 
sends 
 

(18)         𝑈 ൌ 𝑌ௗ 𝑚𝑜𝑑 𝑛    
 

to the victim. He must calculate the following: 
 

(19)        nnYnRnUT d modmodmodmod 1

    

      nnnCXnR d modmodmodmod1

 
     nCXnR d modmod1

 
        nnnCnXnR dd modmodmodmodmod1

 
     nnMRnR modmodmod1

 
MnMRR  mod1

 
 

The attack on the RSA algorithm by using the chosen 
ciphertext attack is based on the presumption that the 
attacker in some way manages to find the chipertext of his 
choice. An attacker who wishes to find the decryption 

𝑀 ≡ 𝐶ௗ𝑚𝑜𝑑 𝑛 of ciphertext 𝐶 can chose a random 

integer 𝑆 and ask for the decryption of the innocent-looking 

message 𝐶ᇱ ≡ 𝑆௘𝐶 𝑚𝑜𝑑 𝑛. From the answer 𝑀ᇱ ≡
ሺ𝐶′ሻௗ, it is easy to recover the original message, because 

𝑀 ≡ 𝑀′𝑆ିଵ. 
It is not necessary for an attacker to learn the complete 

decrypted message in a chosen-ciphertext attack. Single 
bits per chosen ciphertext may be sufficient. In particular, 
there exists an algorithm that can decrypt a ciphertext if 
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there exists another algorithm that can predict the least 
significant bit of a message given only the corresponding 
ciphertext and the public key. [24] 
 
Timing attack 

In general, timing attacks are used to analyze 
differences in execution time that result from differences in 
input parameters of a cryptographic algorithm. These timing 
differences are often caused by optimizing algorithm 
implementations, but they may leak information about the 
input parameters. Using a timing attack, attacker hopes to 
find secret information, like bits from a secret RSA exponent 
[25]. The concept of timing attacks has been known for 
years, but Kocher’s results are new and significant in the 
way that they can recover complete key information given 
only the running time of an operation. Previous attacks 
could only recover partial key information or required timing 
information on the individual steps within a cryptographic 
operation. 

For one of the attacks to succeed, it must be possible to 
measure the running time of crypto graphic operations. 
Thus operations in an interactive protocol such as SSL, or 
in a cryptographic module in the attacker’s possession, 
such as a smart card, are at the highest risk. This is true 
even if there is some “noise” in the measurement, such as 
transmission delays, since the attacker can factor out the 
noise by averaging enough measurements. Operations 
performed privately and without external feedback, on the 
other hand, such as off-line digital signatures or file 
encryption, are unaffected. 

While ameliorating cryptography based on the public 
key, some facts and regularities have been noticed. For 
example the modular and exponential operations used for 
the RSA algorithm request discrete time intervals. If the 
RSA operations are carried out by using the Chinese 
Remainder Theorem, the attacker can use small time 
differences while conducting the RSA operations, and in 

that way he discovers 𝑑. This type of the attack is based on 
passive tapping of the RSA operations.  

The attacker passively observes 𝑘 operation and 

measures time 𝑇 needed for calculating 
 

(20)        𝑀 ൌ 𝐶ௗ 𝑚𝑜𝑑 𝑛   
 

The assumption is that the attacker recognizes 𝐶 and 

𝑛. This method will enable someone who knows the 

exponents 𝑑଴, 𝑑ଵ … , 𝑑௦ିଵ, to discover the bit 𝑑௦; obtain 

the exponent 𝑑, starting from 𝑑଴, repeating the attack until 
he discovers the entire exponent 

𝑑 ൌ 𝑑଴, 𝑑ଵ … , 𝑑௦ିଵ, 𝑑௦, … , 𝑑ఉ . Now, we are starting 

from 𝑑଴ the least important bit when compared to 𝑑. 

Having in mind that 𝑑 is an odd number, we know that 

𝑑଴ ൌ 1. In this phase we have: 
 

𝑑଴ ൌ 1, . 𝑀 ≡ 𝐶,. 𝐶 ≡ 𝐶ଶሺ𝑚𝑜𝑑 𝑛ሻ 

Than we consider 𝑑ଵ. If 𝑑ଵ ൌ 1 than the victim will 

have to do ← 𝑀 ∙ 𝐶ሺ𝑚𝑜𝑑 𝑛ሻ , C← 𝐶ଶሺ𝑚𝑜𝑑 𝑛ሻ if 

𝑑ଵ ൌ 0, than C← 𝐶ଶሺ𝑚𝑜𝑑 𝑛ሻ. 

If 𝑡௜  is needed for the hardware calculation, than 

𝑀௜ ∙ 𝐶௜ ≡ 𝑀௜ ∙ 𝑀௜
ଶሺ𝑚𝑜𝑑 𝑛ሻ. Of course, 𝑡௜  is different 

from the other one, as time for calculation 𝑀௜ ∙
𝑀௜

ଶሺ𝑚𝑜𝑑 𝑛ሻ depends on the value of 𝑀௜ . 
This attack requests monitoring the cryptographical 

operations in real time, which to a larger extent limits the 
possibility to carry out the attack itself. 

The RSA private key operation consist of computing a 
single modular exponentiation operation. Several algorithms 
for implementing this operation are available, yet the 
runtime of these algorithms often depends on the input 
values. When an attacker is able to supply the input value 
and measure the time it takes for the target implementation 
to perform the secret key operation, the attacker can reveal 

the secret RSA exponent or the factorization of 𝑁 into 

prime factors 𝑝 and 𝑞. Several methods are available to 
prevent secret information to leak through timing 
differences. The preferred method is using RSA blinding, 
which is actually successfully implemented in cryptographic 
libraries like OpenSSL. 

To defend against timing attacks, one must try to lessen 
the correlation between the runtime and the private 
exponent. One solution is to add a delay, so that every 
modular operation takes the same fixed time. Another 
solution is called blinding. This transforms the data before 
the private operation using a random value generated by 
the cryptographic module. Now the operation is performed 
on a random data unknown to the adversary, which 
precludes the attack. Important point to note is that timing 
attacks are not only defined against RSA. 
 
Joint modulus attack 

Attacker can under certain circumstances decrypt 
message sent without actually requiring a private key by 

using four RSA parameters ሼ𝑑, 𝑝, 𝑞, 𝜙ሺ𝑁ሻሽ that form the 
RSA trapdoor. These four pieces of information are equally 
important. Knowledge of any one of them reveals the 
knowledge of the remaining three, and hence break the 
RSA encryption completely. However, if RSA is not used 
properly, it may will be possible to break the RSA 
encryption without use of any knowledge of 

ሼ𝑑, 𝑝, 𝑞, 𝜙ሺ𝑁ሻሽ. An examle of such case is improper use 

of the common modulus 𝑁 in RSA encryption. [26] 
The most visible problem is if the same message is 

coded with two different exponents (both have the same 
modulus) and the two exponents are coprime (as are in the 
general case), then the open text can be reconstructed 
without a single decoding exponent. 

In 1984 an even stronger attack against Common 
Modulus RSA was discovered by DeLaurentis. He proved 
that two encryptions of a plain text is not necessesary for 
decryption of all encrypted messages. Any user of the 
system can actually create a new private key which will 

work with any other chosen public key. If 𝑀 message is in 

the form of an open text than keys for the decoding are 𝑒ଵ 

and 𝑒ଶ. Joint modulus is 𝑁. Two decoded messages are: 
 

𝐶ଵ ൌ 𝑀௘భሺ𝑚𝑜𝑑 𝑁ሻ  

𝐶ଶ ൌ 𝑀௘మሺ𝑚𝑜𝑑 𝑁ሻ. 
 

where gcdሺ𝑒ଵ, 𝑒ଶሻ ൌ 1. Than attacker can recover the 

plaintext 𝑀 without using any of the trap-door information 

ሼ𝑑, 𝑝, 𝑞, 𝜙ሺ𝑁ሻሽ.  
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Let 𝑁ଵ ൌ 𝑁ଶ and 𝑀ଵ ൌ 𝑀ଶ but 𝑒ଵ ് 𝑒ଶ and 

gcdሺ𝑒ଵ, 𝑒ଶሻ ൌ 1 such that, 
 

𝐶ଵ ൌ 𝑀௘భሺ𝑚𝑜𝑑 𝑁ሻ  

𝐶ଶ ൌ 𝑀௘మሺ𝑚𝑜𝑑 𝑁ሻ. 
 

Then 𝑀 can be recovered easily; that is, 
 

(21)         ሼሾ𝐶ଵ, 𝑒ଵ, 𝑁ሿ, ሾ𝐶ଶ, 𝑒ଶ, 𝑁ሿሽ
ఘ
⇒ ሼ𝑀ሽ   

 

Since gcdሺ𝑒ଵ, 𝑒ଶሻ ൌ 1, then 𝑒ଵ𝑥 ൅ 𝑒ଶ𝑦 ൌ 1, with 

𝑥, 𝑦 ∈ Ζ, which can be done by the extended Euclid’s 
algorithm (or the equivalent continued fraction algorithm) in 
polynomial-time. Thus, 
 

𝐶ଵ
௫𝐶ଶ

௬ ≡ ሺ𝑀ଵ
௘భሻ௫ሺ𝑀ଶ

௘మሻ௬ 

≡ 𝑀௘భ௫ା௘మ௬ 

≡ 𝑀ሺ𝑚𝑜𝑑 𝑁ሻ 

There are two other dangerous attacks on this type of 
the encryption system. One uses probability method for 

factoring 𝑁. The other uses algorithm for calculating 
someone's secret key for factoring the module. From here 
we can conlude that sharing of single N to the group of 
users should be prohibited. 
 
Attack on RSA signatures 

What made you think that the public key is enough to 
recreate the signature? It is sufficient to verify a signature 
that you are given, but is not sufficient to generate new 
ones (or we hope, if that’s not true, the signature scheme is 
broken). When you are using RSA, the signature verification 
process is (effectively) checking by: 
 

(22)         𝑆௘ ൌ 𝑃𝑎𝑑൫𝐻𝑎𝑠ℎሺ𝑀ሻ൯ሺ𝑚𝑜𝑑 𝑁ሻ  
 

Definition says that 𝑆 is the signature, 𝑀 is the 

message, 𝑒 and 𝑁 are the public exponent and modulus 

from the public key, 𝑚𝑜𝑑 𝑁 means that equality is 

checked, padding function is 𝑃𝑎𝑑, and 𝐻𝑎𝑠ℎ is the 
hashing function. 

Now, if we were trying to forge a signature for a 

message 𝑀′ (with only the public key) we could certainly 
compute 
 

(23)                𝑃′ ൌ 𝑃𝑎𝑑൫𝐻𝑎𝑠ℎሺ𝑀′ሻ൯  
 

however, then we would need to find a value 𝑆′ with: 
 

(24)                   𝑆′௘ ൌ 𝑃′ሺ𝑚𝑜𝑑𝑁ሻ  
 

and, if 𝑁 is an RSA modulus, we don’t know how to do that. 
The holder of the private key can do this, because he has a 

value 𝑑 with the property that: 
 

(25)                   ሺ𝑥௘ሻௗ ൌ 𝑥ሺ𝑚𝑜𝑑𝑁ሻ  
 

for all 𝑥. That means that: 
 

ሺ𝑃′ሻௗ ൌ ሺ𝑆′௘ሻௗ ൌ 𝑆′ሺ𝑚𝑜𝑑𝑁ሻ 
 

is the signature. Now, if we have only the public key, we 

don’t know 𝑑, getting that value is equivalent to factoring 

𝑁, and we can’t do that. The holder of the private key 

knows 𝑑 because he knows the factorization of 𝑁.  
The attack against RSA encryption can be easily 

adapted to RSA signatures to provide an existential forgery 
under a chosen-message attack. [27] 

It makes sense that a message is signed before coding, 
but not everyone sticks to this rule. When the RSA 
algorithm is used, the attack can be carried out on the 
protocols doing the coding before the signing. [28] 
 
Summary 

Four decades of research into inverting the RSA 
function produced some insightful attacks, but no 
devastating attack has ever been found. Most problems 
appear to be the result of misuse of the system, bad choice 
of parameters or flaws in implementations. The attacks 
discovered so far mainly illustrate the pitfalls to be avoided 
when implementing RSA. It could be concluded that the 
RSA algorithm still represents a safe solution, whose usage 
with techniques of attacks is still safe. This claim is rooted in 
the fact that even though the detailed studying of the RSA 
algorithm is ongoing; a method has not yet been discovered 
that would completely break the RSA. Everything comes 
down to discover individual weaknesses which give us a 
warning how to choose parameters for the implementation 
of the RSA. According to all aforementioned, we can 
conclude that, with the proper selection of parameters, RSA 
is considered to be secure cryptosystem. 
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