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Internal Model Control using Artificial Neural Networks for 
Linear Minimum Phase Systems 

 
 

Abstract. In this paper, we are interested in the internal model control using neural networks in the case of linear minimum phase systems. We 
propose, to use the neural internal model control to solve the inversion problem of a model M(z) in order to design the IMC controller. An example 
application is presented and the implementation of the proposed approach is discussed. 
 
Streszczenie. W niniejszym artykule interesuje nas sterowanie modelem wewnętrznym za pomocą sieci neuronowych w przypadku liniowych 
układów o minimalnej fazie. Proponujemy wykorzystanie neuronowego sterowania modelem wewnętrznym do rozwiązania problemu inwersji modelu 
M(z) w celu zaprojektowania sterownika IMC. Przedstawiono przykładową aplikację oraz omówiono wdrożenie proponowanego podejścia. 
(Sterowanie modelem wewnętrznym za pomocą sztucznych sieci neuronowych dla liniowych systemów o minimalnej fazie) 
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Introduction 
Internal model control (IMC) using neural networks has 

gained increasing interest in recent decades due to the 
robustness inherent in its structure, it allows to represent 
dynamic systems from experimental data when a theoretical 
model is unavailable. This control structure has been the 
subject of several research works in the case of nonlinear 
systems based on the neural network. An artificial neural 
network is a computational model whose design is inspired 
by the functioning of biological neurons. Neural networks 
are strongly interconnected structures of elementary 
processors. Each of the processors calculates a single 
output based on the information it receives [1], [2], [3], [4]. 

The IMC control of linear processes by application of 
artificial neural networks (ANNs) are developed in various 
studies where the model is replaced by an ANNs and 
inverted on-line for the calculation of the IMC controller. 
Neural networks can be applied to regulators either directly 
or indirectly. In the case of the direct method, the learning of 
the artificial neural networks is carried out with input-output 
data of the process in order to produce the action of the 
command which leads to the desired state at the following 
sampling instant. knowing the current state of the dynamic 
system, the ANNs thus obtained can therefore be used as a 
controller [5], [6], [7]. 

In the case of the indirect method, learning is done with 
the input-output data of the process, the artificial neural 
network predicts the future state of the system, and can be 
used by an algorithm for the control action. 

In this paper we propose an Internal model control using 
neural networks for linear minimum phase systems. In this 
sense, we deal with the case of neural control by internal 
model, its operating principle, the relative neural modeling 
and the implementation of the proposed control for a linear 
minimum phase system in order to evaluate the 
performance of the control proposed for this class of 
system. 
 
Internal Model Control  

Among the robust control strategies for dynamic 
systems with parameters that may be uncertain, we cite 
sliding mode control, predictive control and internal model 
control. The IMC makes it possible to solve certain 
difficulties for the realization of a robust structure, in the 
presence of modeling errors, and has the advantage of 
ensuring desired properties including stability, precision and 
speed [8], [ 9], [10]. 

Internal Model Control was introduced by Garcia and 
Morari, as a robust control structure to solve some 
difficulties in modeling the system to be controlled such as 
errors [11]. The IMC is applied simultaneously to the 
process G(z) to be controlled and to its model. The specific 
controller of this structure is assumed to be the implicit 
inverse of the process model M(z), Fig. 1. 

 
Fig.1. Internal model control scheme 

The error signal includes the influence of external 
disturbances  P as well as modeling errors. This considered 
structure is similar in the case of continuous time and 
discrete time systems. Among the necessary requirements 
of the IMC is the open-loop stability of its different blocks 
[12], [13]. 

The command U is expressed as a function of the 
setpoint R and the disturbance by the following expression, 
knowing that   1F z   [14], [15]: 

(1) 
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The expression of the closed-loop Y(z) response is then 
presented by the following equation: 
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Neural network in internal model control strategy 
The difficulty of designing an implicit IMC controller 

unlike the model for a certain linear system with minimum 
phase [12], [14], this can be overcome thanks to the neural 
control by internal model. This type of command makes it 
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possible to find online a perfect inverse model at each 
moment by a neural network without any problem with the 
dimension of the system and its model, Fig. 2. 

 

Fig.2. Neural network in internal model control strategy 
 

According to Fig.2, the Internal model control using 
neural networks consists of three blocks. The first block 
"System" represents the system to be controlled, the 
second block "Neural net inverse model" represents the 
neural controller by internal model C(z), the third block 
"Neural net forward model" represents the model M(z). 

The difference e(k), between the output of the system to 
be controlled y(k) and the output of the Neural net forward 
model ŷ(k)  is injected as input to the neural net inverse 

put in series with the system to be controlled. 
The neural internal model controller ensures perfect 

tracking of the reference trajectory in the perfect case. In 
the case where there are deviations between the model 
M(z) and the system G(z) to be controlled which can be 
expressed in terms of parametric uncertainties, a 
robustness filter F(z) can be added to guarantee stability 
[12], [13]. 

From Fig. 2, the neural internal model control strategy is 
based on the use of two different neural models. The first 
characterizes the dynamic behavior of the system to be 
controlled from the measurements of its inputs / outputs, 
this network represents the direct model of the system. The 
second model is the inverse neural model of the system [1], 
[2]. 
Neural Forward Model 

To determine the direct neural model, we use a look-
ahead network that estimates the output of the system from 
the old values of its input and output. The number of inputs, 
hidden layers as well as the number of neurons per layer 
have a great influence on the behavior of the neural model. 
The learning pattern of the direct neural model is given in 
Fig. 3. 
 
 

 

Fig.3. Forward dynamic modelling with neural networks 

where:  u(k), y(k) and ŷ(k) represent the control input, the 

desired output and the output of the neural model, 
respectively. 
 

The dynamics of nonlinear systems can be described by 
the following relation [16]: 
(3) i i i i iy (k) h(y (k 1) ,..., y (k n), u (k 1), u (k m))    
                                                               
where: 

(4)   T1 2 ny(k) y (k), y (k),..., y (k)  

 

(5)  T1 2 nu(k) u (k), u (k),..., u (k)  

where:  
h(.) is an unknown nonlinear function, n and m represent, 
respectively, the number of delayed measurements of the 
output and the input. 

iy (k)  is the output of the system at sampling time k.  

 
The expression of the output of the neural model is as 
follows [16]: 

(6) i i i i iŷ (k) NN(y (k 1) ,..., y (k n)u (k 1), u (k m))    
 
with NN designates the neural network that forms the 
model. 

In the case of point-by-point learning, the criterion to be 
minimized is expressed by the following equation: 

(7) 2
i i i

1
ˆJ (y (k) y (k))

2
                                   

In order to determine the parameters of the neural 
model, we apply to the real system a sequence of inputs, u 
(k), for k = 1, ..., N, N denotes the number of 
measurements. For each value of u(k), we record the value 
of the output y(k). The duration between two successive 
iterations is equal to the sampling period Te. 

 The learning procedure consists of presenting the 
measurements to the model to calculate the prediction error 
as shown in Fig. 3. During each iteration, the weights of the 
connections are modified until a very low modeling error is 
obtained [17]. The neural model is exploited using the 
parameters found at the end of the learning phase. The 
error between the output of the system and that of the 
model will be used to judge the quality of the model found. 
 

 Neural inverse model   
In the case of the inverse method, the training is done 

for the determination of the inverse model of the process. 
Based on the input-output data of the process, the artificial 
neural network replaces the model with a neural network 
and back online for the development of the controller. The 
dynamic system can be described at iteration (k+1) by the 
following equation: 

(8) i i i i

i i i

y (k 1) h(y (k), y (k 1) ,..., y (k n 1),

u (k),u (k 1),..., u (k m 1))

    
  

               

The inverse model of the system given by equation (8) can 
be presented by equation (9). 

(9) 

1
i i i i

i i i

u (k) h (y (k 1),..., y (k), y (k 1),

y (k n 1),u (k 1),..,u (k m 1))

  
    
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In order to approximate the function h(.) as an inverse 
function of h by a neural network, the inverse model 
receives as input: 
- The future value of the setpoint y(k+1). 
-The current value and the old values of the output y(k),  
y(k-1),..., y (k-n+1). 
- The old values of the input u(k-1), ..., u(k-m+1). 
 

In the literature, the identification of the inverse neural 
model can be ensured in the first step by determining the 
input vector, while knowing the number of delayed inputs 
and outputs and in the second step by determining the 
architecture of the network [5], [6]. 

Simulations Results 
To validate the proposed algorithm and highlight the 
properties of the command proposed for the control of a 
linear minimum phase systems, we have developed a 
neural network with a fixed learning step 0.03 . The 
developed control law depends on the parameters. of the 
neural controller such as the synaptic weight matrix, the 
input vector, the numbers of n and m neurons of the hidden 
layer and the input layer respectively. 
we consider a linear minimum phase system to validate our 
proposed ordering approach. this system is given by the 
following equation. 

(10)    
 

 
 

1

1 1

1

N z Y z
H z z

U zD z


 


   

where : 

(11)    1 1 1 1 2N z 0.1 0.09 z , D z 1 z 0.3z          

The input vector is defined by: 

(12)  ˆ ˆ( ) ( ), ( 1),..., ( 1), ( 2),...
T

i i i iX k k k y k y k        

(13) ( ) ( ) ( )i ci ik y k e k                                   

(14) ˆ( ) ( ) ( )i i ie k y k y k                                   
yc(k) is the reference signal, ˆ( )y k is the output estimated by 

the internal neural model and y(k) is the actual output of the 
system to be controlled. 
The performance of the model is determined by the mean 
squared error (MSE) criterion given by the following 
equation [5]: 

(15) 
2N

c
i 1

1
MSE (y(i) y (i))

N 
                              

The reference input signal yc(k) is a square amplitude 
signal that varies between 1 and -1, its expression is given 
as follows: 

(16)  c

1, 0 k T
y (k)

1, T k 2T

 
   

                                   

 

 

Fig.4 : Variations in actual plant output y(k) and plant model output 
estimated by the neural internal model ˆ( )y k  

 

Fig. 4 shows the evolution of the actual plant output y(k) 
and plant model output estimated by the neural internal 
model ˆ( )y k . We notice that the model perfectly mimics the 
behavior of the system. This will lead to good closed loop 
performance. 

Fig. 5 illustrates the evolution of the output of the system 
y(k), by applying the internal model control using neural 
networks, the output y(k) perfectly follows the reference 
setpoint with good precision without overshoot and a 
response of the system in term speed. 

 
Fig.5: Desired output Vs actual output after neural internal model 
control 
 

Fig. 6 presents the evolution of neural internal model 
control. This control law is able to make the system 
described by equation (10) to correctly follow the trajectory 
of the reference model, Fig. 5, with good precision as 
shown in Fig. 7. 
 

 
Fig.6: Evolution of the controlled input by neural internal model 
control law 
 

Fig. 7 shows the difference between the setpoint 
yc(k) and the output y(k) by the neural internal model 
control. We notice that the gap tends towards zero. 

 

Fig.7: Error in Plant Model 

 
Fig. 8 illustrates the difference between the desired 

setpoint and the direct neural model. We notice the perfect 
correspondence between yc(k) and iŷ (k) . 
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Fig.8: Error in Inverse Model  
 

Conclusion 
In this paper, we have developed, tested and discussed 

the different efficiencies of internal model control law using 
neural networks, modeled by a direct neural network and 
inverse neural model based controller. 

The results of simulations for the linear minimum phase 
system have shown that the neural control by internal 
model is efficient by giving a good tolerance to errors in 
terms of robustness, stability and response time. The latter 
also exhibits good tolerance to modeling faults and to 
disturbances. 

This proposed control approach will be applied for other 
classes of systems in a future work. 
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