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VSLAM analysis using various  ORBSLAM parameters setting 
 
 

Abstract: SLAM or simultaneous localization and mapping system, is a system that determines the orientation and position of a robot by creating a 
detailed map of the environment while simultaneously tracking where the robot is within the environment. This project aims to use the camera as 
SLAM primary sensor to replace the LiDAR sensor frequently used in autonomous robots. ORBSLAM is used as the main algorithm, and a few 
settings are being adjusted to get the most accurate results. The Absolute Trajectory Error and Relative Pose Error are used to evaluate the 
algorithm's accuracy. After the most optimized setting is found, the setting is used for real-time mapping in an unknown environment. 
 
Streszczenie. SLAM lub system jednoczesnej lokalizacji i mapowania, to system, który określa orientację i pozycję robota, tworząc szczegółową 
mapę otoczenia, jednocześnie śledząc, gdzie robot znajduje się w środowisku. Celem tego projektu jest wykorzystanie kamery jako głównego 
czujnika SLAM, który zastąpi czujnik LiDAR często używany w autonomicznych robotach. ORBSLAM jest używany jako główny algorytm, a kilka 
ustawień jest dostosowywanych, aby uzyskać jak najdokładniejsze wyniki. Bezwzględny błąd trajektorii i względny błąd pozycji służą do oceny 
dokładności algorytmu. Po znalezieniu najbardziej zoptymalizowanego ustawienia jest ono używane do mapowania w czasie rzeczywistym w 
nieznanym środowisku. (Analiza VSLAM przy użyciu różnych ustawień parametrów ORBSLAM) 
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Introduction 

Nowadays, many inventions are being invented to 
reduce the burden of labour on humankind. Invention such 
as robot is being used to replace human as labour to do 
challenging jobs. Nevertheless, there is a need for a 
particular thing: machines do physical tasks and think and 
make decisions. An autonomous robot that can travel freely 
in a static or dynamic environment is required to reach all 
the stated objectives. The perfect navigation system must 
be built so that the robot always knows where should it go 
[1].  

In today's world, the main localization system used is 
the Global Navigation Satellite System (GNSS), which has 
been fantastic in providing an absolute positioning on 
Earth's surface [2]. Nevertheless, the GNSS system is not 
always perfect if the environment is uneven. Furthermore, 
some unexpected geographical conditions can lead to 
errors of some meters, which is not acceptable for safe 
robotic autonomous navigation. Moreover, a mobile robot 
needs to be able to navigate even in a dynamic 
environment with potential obstacles and does not always 
have any prior information about its environment 

Smooth and safe mobile robot navigation through the 
cluttered environment from the start position to the goal 
position by following the safe path and producing optimal 
path length is the main aim of mobile robot navigation. 
Several techniques have been explored by researchers for 
robot navigation path planning regarding this matter. 
Artificial intelligence plays an important role to make things 
intelligent to achieve this target. Path planning has been 
considered the most common problem for robot navigation, 
and robots have to move from starting position to the goal 
position by avoiding obstacles [3].  
 
Literature Review 

Autonomous navigation for mobile robots has been a 
very active research area in the past few decades. A 
navigation system is an essential feature in robotics in order 
to develop an autonomous robot. SLAM is being introduced 
in the robotic industry to get more precise and accurate 
navigation. SLAM is a process in which a robotic system 
constructs a map of the environment using any devices 
attached while simultaneously estimating its position in the 
environment [4]. In order to gather information about the 

environment, the current position of the robot must be 
known. Therefore, the robot's position must always be 
localized in the incomplete map to get more information 
about the environment.  

 
Figure 1: A taxonomy of the SLAM problem [4] 
 

Figure 1 shows the taxonomy of the SLAM problem that 
being occurred. Precise and accurate localization is the 
most crucial part of the SLAM process. Therefore, an 
inaccurate localization produces an error map and makes 
future localization more difficult. SLAM is a very hard 
process because the robot has to adapt and face problems 
such as the noise from the sensors and the inertia effect of 
the motor used [4]. The SLAM problem is formulated in the 
Bayes Net diagram shown in Figure 2. 

 

 
 

Figure 2: Bayes Net Diagram [4] 
 
X = {xi}, i ∈ 0…., M in Figure 2 is being defined as the 

robot's trajectory through time, with xi as the vector 
representation of the state or pose of the robot [4]. The 
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state of a robot, such as velocity and acceleration, is being 
parameterized in SE (2). SE (2) is a coordinate system for 
the robot's configuration space [5]. The SE (2) is described 
as a planar rigid body motion represented by the Special 
Euclidean group in two dimensions. The SE (2) system 
point out where the robot should be going on the planar 
coordinate so that the robot processes the correct plan that 
it should be heading [4]. Meanwhile, L = {lj}, j ∈ {1, . . ., N} is 
the latent position of the landmark and Z = {zk}, k ∈ {1, . . ., 
K} is the noisy measurements to the landmarks detected. 
The robot motion problems due to the noise or inertia that 
been recovered is denoted by U = {ui}, i = {1, . . ., M}[4]. 
i. Visual SLAM 

Visual SLAM, also known as VSLAM, is one of the SLAM 
approaches that has received much attention from the 
robotics field because of its ability to overcome all other 
sensor shortcomings [5]. VSLAM has been researched 
more frequently in recent years. The camera is a detector 
for this technology that collects more data, has important 
object identification functions, senses at a much better 
resolution than radar, is less expensive, is easier to 
transport, and operates more simply. Given all of the 
advantages, it's no wonder that many institutions and 
researchers are focusing more on this strategy [5]. VSLAM 
technology has gradually progressed from laboratory 
research to practical applications. A few popular types of 
camera sensors are frequently used, such as monocular 
cameras, binocular cameras, and RGB-D depth cameras, in 
terms of sensing[6]. 
 Figure 3 shows the technical framework of the VSLAM 
that is being applied to the VSLAM system [6]. The 
framework is the classic framework for the SLAM. The 
VSLAM framework consists of four primary modules, and 
each of them consists of many algorithms: Visual-inertial 
odometry (VIO), Optimization, Loop Closing, and Mapping 
[6]. 
 
 

 
 

Figure 3: Technical Framework of VSLAM 
  
ii. Comparison of the VSLAM Algorithms 
Numerous VSLAM algorithms would be suitable to be 
implemented for this project. However, each method has 
advantages and disadvantages, limiting its applicability to 
specific environments. Table 1 summarizes all of the 
VSLAM algorithms developed over the years. 

Each of the algorithms shown in Table 1 has its benefits 
and drawbacks. The area determines the compatibility of 
most algorithms they aim to cover, and some of them 
contain a loop closure feature that reduces error in the 
process. Because of its cost flexibility and the number of 
open resources available, the ORB-SLAM appears to 
outperform all other methods in robot navigation usage [7]. 
 
Methodology 
i. Working Principle  

 The VSLAM for the autonomous mapping project is 
implemented into the Jetson Nano (B01) as the central 

processor and core [8]. The working principle of this project 
as the algorithm chosen is tested with a few parameter 
settings to find the most optimized setting that can be used 
for real-time mapping.  
 A dataset of Euroc is being used to differentiate the 
result and make the analysis comparable for each 
parameter setting. After that, the Absolute Trajectory Error 
(ATE) evaluation and Relative Pose Error (RPE) evaluation 
are used to see the value of error that is being received in 
each of the settings [9]. The setting with the least RPE and 
ATE error is chosen for the real-time mapping.  
 Then, a robot hardware component is used to carry the 
camera and the Jetson Nano to operate the algorithm in a 
real-time environment. The robot is equipped with the 
L298N motor driver and 2 Dc motor to control the robot's 
movement. 
 
Table 1: Summary of all the VSLAM algorithms[7] 
Algorithm Method Loop 

Closure 
Cost Disadvantage 

Mono-
SLAM 

Feature 
Method 

No Flexible 
(based on 

the 
camera 
used) 

Difficult to do 
the 

calculation if 
covering a 

large 
environment. 

PTAM Feature 
Method 

No Flexible 
(based on 

the 
camera 
used) 

Lacking of 
loop closure 
feature, it's 

only suited for 
small-scale 

AR  
LSD-
SLAM 

Direct 
Method 

Yes Rm100++ Low quality of 
camera 
resulting 

lower quality 
results 

ORB-
SLAM 

Feature 
Method 

Yes Flexible 
(based on 

the 
camera 
used) 

Not suitable 
for tracking in 
high-density 
requirements 

RGB-D 
SLAM 

RGB-D 
method 

Depend 
on 

algorithm 

Rm300++ Complicated 
to deploy 

 
ii. Project Overview 

The Jetson Nano function sends the signal obtained 
from the user and sends the information gathered to the 
Arduino nano. The Arduino received the signal and started 
controlling the motor driver based on the given signals.   

 
Figure 4: System Overview 
 
iii.  Communication with Arduino Nano 
To make this project work as one single unit, the Arduino 
Nano received the Jetson Nano (B01) signal to control all 
the other components. A communication package called 
rosserial is used to communicate with both boards [10]. 
Rosserial is a protocol used to send data through a serial 
interface, and the integration between both boards is shown 
in Figure 5 [10]. 



42                                                                                PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 98 NR 9/2022 

 
Figure 5: Rosserial Integration with Hardware Components 

 Based on Figure 5, Jetson Nano serves as the computer 
in this project, while the Arduino Nano serve as the 
microcontroller. In this implementation, rosserial-server is a 
publishing node, whereas rosserial-client is a subscriber 
node, albeit this can occasionally be reversed[11]. A micro-
USB cable is utilized as a communication link between the 
Jetson Nano and the Arduino Nano for this communication 
protocol to be implemented[11]. 
 
iv. Algorithm Selection 
To start processing the map, a correct VSLAM Algorithm 
has to be selected. A proper algorithm selection can make a 
major difference in the result. When it comes to getting the 
best outcome from the camera input without being 
considering the light intensity, the ORBSLAM algorithm is 
the best algorithm that can be found. 
 

v. Euroc Dataset 
Dataset is a sequence of images or videos in a certain 
environment used to test performance. In this project, Euroc 
dataset is being used. Euroc datasets are the dataset that is 
released by the Swiss Federal Institute of Technology 
Zurich [12]. The EuRoC MAV dataset is a visual-inertial 
dataset collected on a Micro Aerial Vehicle (MAV). The 
Euroc dataset already has a ground-truth value, making the 
evaluation much more manageable. The Euroc ground-truth 
value is being obtained using the Vicon motion capture 
system (6D pose), Leica MS50 laser tracker (3D position) 
and Leica MS50 3D structure scan [12].  
  In this project, the Euroc Dataset is the main 
performance benchmark for the ORBSLAM algorithm 
settings chosen to select the most optimized setting for real-
time mapping. 
 
vi. Camera Selection 
The camera that is used in this project is the Logitech c270. 
The Logitech c270 is being chosen due to its capability in 
processing V4L2, a video interface for any Linux OS. The 
V4L2 makes the interaction much easier with the Jetson 
Nano(B01) to troubleshoot if there are any problems. 
 

vii. Camera Calibration  
Before beginning the real-time mapping using the VSLAM 
algorithm that is selected, firstly, the camera must be 
calibrated to get the right range of detection required[9]. 
Camera calibration is necessary to find the measuring 
distance from images acquired with a stereo camera, 
monocular camera, or processing images for object 
recognition. 
 The most used model for perspective camera assumes 
a pinhole projection system: the image is formed by the 
intersection of the light rays from the objects through the 
centre of the lens (projection centre), with the focal plane as 
shown in Figure 6 [9].  

 
Figure 6: Perspectives Projection of Camera Through Object [9] 
 

 Based on Figure 6 perspectives projection, the X line on 
the figure can be X = [x,y,z]^T as a scene point in the 
camera reference frame, and p = [u,v]^T is the camera 
projection on the image plane that is measured in pixels [9]. 
The perspective projection equation gives the mapping from 
the 3-D world to the 2-D image, as shown in Equation 1[9]. 
 

(1) 𝛌
𝒖
𝒗
𝟏

𝑲𝑿  
𝜶𝒖 𝟎 𝒖𝟎
𝟎 𝜶𝒗 𝒗𝟎
𝟎 𝟎 𝟏

𝒙
𝒚
𝒛

 

 
 

where: λ =the depth factor for the camera, 𝜶=the focal 
length s of the camera used, u , v = the coordinates of the 
projection centre, x,y,z is equal to axis of the projection 
 

 Based on Equation 1, the parameter generated using 
the matrix equation is called the intrinsic parameter suitable 
for a camera with an angle of view 45° or less[9]. However, 
for the angle of more 45°, the effect of the radial distortion 
of the camera may become visible, and it can be modelled 
using the second- (or higher)-order polynomial[9]. 
 

viii. Evaluation 
In this project, the Euroc dataset name V1_01 is used as a 
benchmark dataset to find the best accurate parameter 
setting before real-time mapping. The number of point cloud 
parameters on the ORBSLAM setting is being adjusted from 
the lowest possible value for the Monocular camera to the 
highest possible to see its effect on the performance and 
accuracy of the map generated using the datasets. In this 
section, all the evaluation methods to find the most accurate 
parameter for the ORBSLAM are explained. 
 

ix. Relative Position Error (RPE) 
The algorithm generates the estimated trajectory pose to 
evaluate the VSLAM algorithm performance and accuracy 
when finished processing. All the datasets' sequences are 
assumed as P_1,..,P_n ∈ SE(3). The trajectory pose of the 
ground truth is set as Q_1,..,Q_n∈ SE(3) [13]. Neither the 
estimated nor the ground truth trajectory, both sequences 
consist of homogeneous transformation matrices that 
represent the pose of the RGB optical frame from an 
(arbitrary) reference frame. The relative pose error (RPE) 
measures the local accuracy of the trajectory over a fixed 
time interval ∆ of the sequences [13]. 
 Therefore, in simple words, the relative pose error 
measures the drift of the pose trajectory based on the 
ground truth, which is very useful for evaluating visual 
odometry. In other words, it calculates the difference in 
relative motion between two poses which may be used to 
estimate drift. The relative pose error at time step i is 
defined as Equation 2. 
 
(2) 𝐄𝐢  ∶ 𝑸𝒊

𝟏 𝑸𝒊 𝚫 𝑷𝒊
𝟏𝑷𝒊 𝚫  

 
where: S= the rigid-body transformation, Q= the trajectory 
poses of the ground truth, P= the estimated trajectory poses 
that being generated by the algorithm, ∆= time interval 
value 
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 Using a sequence of n camera poses, m = n − ∆ is 
being obtained to find individual relative pose errors along 
the sequence [13]. The root mean squared error (RMSE) 
over the total time indices of the translational component is 
being calculated using: 
 

(3)      𝑹𝑴𝑺𝑬 𝐄𝟏:𝐧 , 𝚫
𝟏

𝒎
∑ |𝒕𝒓𝒂𝒏𝒔 𝑬𝒊 |

𝟐𝒎
𝒊 𝟏

𝟏
𝟐 

 
where: m=number of sequences, 𝒕𝒓𝒂𝒏𝒔 𝑬𝒊 = transpose of 
absolute trajectory error at time step 
 

 Based on equation 3, the RMSE value should not be 
more than 1% due to the drift error being generated by the 
estimated pose. If the RMSE value exceeds 1%, the setting 
used for the processing cannot be used due to a higher 
pose relative error between the ground truth and the 
trajectory generated[13]. 
 

x. Absolute Pose Error 
The most obvious accuracy of the algorithm can be 
evaluated by comparing the absolute distance between the 
estimated trajectory and the ground truth trajectory[13]. 
Both trajectories can be specified in arbitrary coordinate 
frames; however, both of them need to be aligned first to 
compare them. The method of Horn can be used to get both 
the trajectory aligned together, which determines the rigid-
body transformation S that maps the predicted trajectory 
P1: n onto the ground truth trajectory Q1: n[13].   The 
absolute trajectory error at the time step may be determined 
using this transformation, as shown in Equation 4[13]. 
 
(4)                                    𝑭𝒊 ≔ 𝑸𝒊

𝟏𝑺𝑷𝒊 
 

where: S= the rigid-body transformation, Q= the trajectory 
poses of the ground truth, P= the estimated trajectory poses 
that being generated by the algorithm 
 Similarly, the ATE also evaluates the RMSE over all 
time indices of the translational components with the 
relative pose error. The RMSE formula can be defined as 
Equation 5 [13]. 
 

(5)            𝑹𝑴𝑺𝑬 𝐅𝟏:𝐧 ∶
𝟏

𝒏
∑ |𝒕𝒓𝒂𝒏𝒔 𝑭𝒊 |

𝟐𝒏
𝒊 𝟏

𝟏
𝟐 

 

where: n=number of samples, 𝒕𝒓𝒂𝒏𝒔 𝑭𝒊 = transpose of 
absolute trajectory error at time step 
 

 Compared to the RPE, ATE only consider the 
translational error while the RPE consider both the 
translational and considers both translational and rotational 
errors [13]. Therefore, the RPE is always slightly larger than 
the ATE. 
 

Result And Discussion 
i. Robot Control 

A robotic device is being made for carrying all the important 
components to do the mapping process, obtaining the result 
of the real-time map using the selected algorithm. The user 
then controls the device using the teleop-twist keyboard in 
the ROS platform attached to the Jetson nano [14]. 
 

 
 

Figure 7: Result of the Robot components 

 The Arduino nano subscribes to the /cmd_vel topic and 
receives the signal based on what is being pressed on the 
keyboard and based on the signal sent; the motor moves as 
the instruction written on the nano coding [15].  
 Figure 8 shows the fully connected topic from the 
teleop-twist keyboard to the Arduino nano attached to the 
robot. The Arduino nano communicates to the Jetson nano 
using a micro-USB wire that is attached to the USB port of 
the Jetson nano[15]. The USB act as a power supply and, 
at the same time, gives the signal that is required for the 
Arduino to move the robot motor.  
 

 
 

Figure 8: The ROS Subscriber Graph to Control the Robot 
 
ii. ORBSLAM Selection 

A few algorithms can be used for the VSLAM mapping 
process. Algorithms such as DSO and LSD SLAM are a few 
examples of the Monocular camera-based algorithm used in 
this project [7][16]. However, the ORBSLAM algorithm is 
chosen as the main algorithm for this project. The selection 
is influenced by its outstanding performance, which 
outperforms all the other algorithms in the Absolute 
Trajectory Error (ATE) evaluation based on the previous 
paper [9]. Table 2 show the ORBSLAM performances 
compared to other algorithms. 
 

Table 2: Comparison ORBSLAM with other Algorithm [16] 
Algorithms RMSE 

(m) 
Mean 
(m) 

Median 
(m) 

Std (m) Min 
(m) 

Max 
(m) 

LSD SLAM 0.301 0.277 0.262 0.11 0.08 0.55 
ORB 
SL-AM 

0.166 0.159 0.164 0.04 0.04 0.25 

DSO 0.459 0.403 0.419 0.21 0.00 0.76 
 

 Based on Table 2, the ORBSLAM Algorithm has the 
lowest trajectory drift error compared to the other two 
algorithms that are being selected. The error value of 
ORBSLAM from the RMSE, mean error, median error, 
Standard deviation, minimum error, and maximum error all 
has lower error value than the DSO and LSD SLAM 
algorithm [9]. In conclusion, the ORBSLAM has the lowest 
drift error for the table compared to other selected 
algorithms, producing the most accurate result. Therefore, 
the ORBSLAM is being used as the main algorithm tested 
in this project. 
 

iii. Result Comparison  
Figure 9 shows the result obtained using the 
800,1000,1500, and 2000 Features per images parameter 
settings. 
 Based on Figure 9, the result shows all the maps 
developed using 800,1000,1500 and 2000 Features points 
per image parameter setup. The map generated using the 
800 Features point per image shows the lowest essential 
graph connection (green link) between each keyframe (blue 
box); meanwhile, 1000 Features points per frame show 
more generated essential graph than 800 Features per 
image [17]. The environment map generated in the 1000 
Features point per image also seems more accurate than 
the 800 Features per image setup. 1500 Features point per 
image and 2000 Features point per image, on the other 
hand, seems to have equal visualization of the environment 
that is being developed. However, the essential graph 
linked in the 2000 Features point per image is higher than 
the 1000 Features points per image set.  
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Fig. 9: Sparse Map developed using 800 Features per frame,1000 
Features per frame, 1500 Features per frame and 2000 Features 
per frame. Keyframes (blue), Current Camera (green), MapPoint 
(black, red), Current Local MapPoint (red), Essential Graph (green) 
[17] 

 The higher essential graph connection means that the 
loop closing process in the map trajectory has more 
accuracy [17]. The 2000 Features points per image have 
the essential graph connection compared to the other 
parameter settings being tested. Therefore, theoretically, 
the 2000 Features per image should produce the most 
accurate map compared to the others[17]. 
 
iv. Evaluation 
The ATE and RPE formula has been used and mentioned 
in Equation 3 and Equation 5. The final evaluation results in 
being plotted in Table 3. 
 
Table 3: ORBSLAM performance in Euroc dataset 
Camera Parameter 

Adjustment 
Average 

Total 
Matches 

Point 

Mean 
Tracking 
Time(s) 

ATE 
RMSE 

(m) 

RPE 
RMSE 

(m) a b c 
 

800 15 5 229 0.145 0.095464 0.674739 
1000 20 7 253 0.172 0.098354 1.004954 
1500 25 9 315 0.208 0.097415 0.928890 
2000 30 11 432 

 
0. 243 0.060098 0.932499 

*  a is Number of Features points per image, b is Features Point 
Value to Initialize and c is Min. Threshold Value for Features Point 
Detection. 
 
 Based on Table 3, the result shows that the 2000 
Features point per image has the longest tracking time by 
0.243 seconds compared to the closest parameter settings 
at 0.208 seconds. The high number of features point that it 
processes simultaneously makes the Jetson Nano (B01) 
GPU usage higher than usual and slower the overall 
process of the devices. In the ATE RMSE section, 2000 has 
the lowest error at 0.060098 compared to the other 
parameter. The rich information gathered through the 
highest features point detection results from the most 
accurate trajectory than the ground truth. However, 
considering the Pose error in the projection, the 800 
Features point per image shows the slightest error 
compared to others by 0.674739.  
 
v. Real-time mapping Result 
Based on the evaluation result, the real-time mapping 
process has been done using the most suitable parameter 
based on the result obtained. The result is processed using 
the robot hardware made as a medium transporting the 
camera and the machine. However, the RMSE of the RPE 

and ATE evaluation for the real-time environment cannot be 
plotted due to the unavailability of the ground truth value for 
the real-time surroundings[18]. Figure 11 show the result of 
the mapping process in an unknown environment. 
 

 
 

Fig. 10: The environment 

 
 

Fig. 11: Result of Real-Time Environment Mapping with essential 
graph (green line), keyframes (blue) and point cloud (red) 

 

 Based on the result obtained in Figure 11, the result 
shows that the mapping process that has been done by 
using the setting 2000 Features per image, 30 features 
point value needed to initialize and the minimum threshold 
value for features detection of 11 on a real-time 
environment. However, the 2000 Features points per image 
time processing may become an issue as its processing 
time is the longest compared to all the selected parameter 
settings. Therefore, 1500 Features point can be used to 
reduce the time processing for the mapping because the 
1500 Features per image has the result almost the same as 
the 2000 Features per image. 
 
vi. Discussion 
Based on the study carried out, the most accurate 
parameter obtained is the 2000 Features point detection per 
image. It has the lowest ATE error, making it the most 
accurate trajectory result compared to the other 
parameters. However, the tracking time may become an 
issue for the detection because it needs a longer 
processing time to process all the points that are being 
detected [19]. The number of feature points for initialization 
can be lowered to make the detection much faster to 
overcome those issues, and coding can be adjusted to 
make the mapping process faster. On the other hand, the 
800 Features point per image may have the lowest error 
among all the settings, but the produced map does not have 
enough information as the other settings. 
 During building the ORBSLAM packages, there were 
some problems with the ORBSLAM algorithm file and other 
testing algorithms. Algorithms such as LSD slam and DSO 
slam have been installed on the Jetson Nano(B01) for 
testing purposes. Still, a few issues, such as multiple 
dependency packages for each algorithm, make it hard to 
build together on the same storage. Therefore, only one 
algorithm is chosen as the main algorithm, the ORBSLAM2 
algorithm. ORBSLAM2 is being selected as the main 
algorithm as it has the fastest detection and least trajectory 
error, according to previous research that has been done. 
 A few disadvantages of using the camera-based 
algorithms have also been found during the testing. One of 
the disadvantages of using any camera-based algorithm is 
the lighting intensity for the environment can heavily affect 
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the result [20]. A direct based algorithm such as LSD SLAM 
is heavily affected by the light intensity as it cannot process 
the image projection correctly. The ORBSLAM algorithm 
result is not affected by the result. However, if there is not 
enough light in the surrounding, the ORBSLAM may not be 
able to detect the features point of the environment as it 
cannot see the edge or corner of an object to do the 
detection. Other than that, fast rotation also happens to be 
a problem for the Visual SLAM algorithm as it cannot 
translate fast rotation that is done by the camera fast 
enough as the real-time[20].. 
 
Conclusion 

The objectives set at the beginning of the project are to 
analyze the performance of the selected VSLAM algorithm 
based on the accuracy of the map produced and to design 
and build suitable coding for the robot to move to map all 
the surrounding environments. ORBSLAM performances 
are being analyzed by changing the parameter used to set 
the detection of the environment. The most optimized 
performance that is being obtained is by using the 2000 
Features point per image detection, which is the setting that 
gives the right amount of information for the environment 
detection and lower error compared to the other parameter 
settings. The most optimized setting makes the trajectory 
plot much more detailed, bringing a more accurate map. 
However, the time to track the features point at each frame 
also increased, resulting in much more time to complete the 
whole mapping process. 
 The robot car made has also been successfully moved 
by using the rosserial communication ROS coding in the 
Arduino nano and the Jetson Nano(B01). However, the 
Jetson nano (B01) cannot supply enough power to control 
the motor and, at the same time, execute the ORBSLAM 
algorithms. The Jetson nano is connected to the Jetson 
Nano power supply adapter to get a constant power supply 
to operate both processes. Despite that, both of the 
objectives are still being achieved, although the result for 
the robot movement is not perfectly made using a 
conventional power supply. 
 
Future Work 

For future works, to obtain much more precise and 
accurate results, a higher accuracy camera such as 
Intelrealsense and the Stereo camera can replace the 
Logitech c270 camera that is being used. It will provide a 
wider and more accurate view of the results. Plus, a much 
higher angle camera view can cover up to 180° of view of 
the environment [18].  
 The ORBSLAM algorithm code adjustment can be made 
by decreasing the detection, tracking, and localization time 
to make the mapping process faster and perform a much 
higher detection speed. The Deep Learning process also 
can be included to find the optimal setting for the mapping 
based on the time for tracking and the essential graph 
produced [21].  
 The robot can be improved for the robot components by 
adding the dc motor with an encoder that can read the 
odometry value of the environment more accurately. The 
robot can also be set up with a dependable supply that can 
support the jetson nano power required to operate the 
VSLAM algorithm. Lidar also can be used in combination 
with the camera to get a much more robust result [21] 
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