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Comparison of CNN and LSTM algorithms for solving the EIT 
inverse problem 

 
 

Abstract. This article presents comparative research to verify the suitability of selected machine learning methods for the problem of solving the 
inverse problem in electrical impedance tomography. The research involved the use of a tomograph to image areas of moisture inside the walls. The 
measurement data collected by the tomograph was transformed into 3D spatial images using two types of artificial neural networks - convolutional 
neural network (CNN) and recurrent long short-term memory network (LSTM).  
 
Streszczenie. W tym artykule przedstawiono badania porównawcze w celu weryfikacji przydatności wybranych metod uczenia maszynowego do 
zagadnienia polegającego na rozwiązaniu problemu odwrotnego w elektrycznej tomografii impedancyjnej. Badania polegały na wykorzystaniu 
tomografu do obrazowania obszarów zawilgocenia wewnątrz murów. Zgromadzone za pomocą tomografu dane pomiarowe zostały przekształcone 
na obrazy przestrzenne 3D za pomocą dwóch rodzajów sztucznych sieci neuronowych – konwolucyjne sieci neuronowej (CNN) oraz sieci 
rekurencyjnej typu long short-term memory (LSTM). (Porównanie algorytmów CNN i LSTM do rozwiązania problemu odwrotnego EIT). 
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Introduction 
Tomography belongs to the field of non-destructive 

testing, which is the only one that enables imaging of 
internal sections of walls in order to monitor moisture [1]. It 
can be used to create both 2D cross-section images and 3D 
spatial reconstructions. Contrary to standard methods, 
which enable humidity measurements only in selected 
points of the wall [2], tomographic images show larger 
areas. Thanks to the appropriate color calibration in the 
images, it is possible to effectively emphasize areas with 
higher humidity against the background of the fragments 
with a lower level of humidity, which can be considered as 
the background. So, tomography is a relative method that is 
not used to accurately measure the percentage of water 
content in porous walls, but it is a method that can monitor 
the spatial and relative distribution of moisture. In this study, 
the Electrical Impedance Tomography (EIT) was used to 
measure the humidity of the brick walls of the building [3–5]. 
The effectiveness of the tomographic system depends on 
the efficiency of the system for converting measurements to 
images. This is called an inverse problem that can be 
solved with deterministic or machine learning methods. 

Deterministic methods rely on the appropriate selection 
of coefficients in the mathematical model. Examples of 
deterministic methods are Level Set, Gauss-Newton or 
Total Variation [6]. With appropriate iterative 
transformations, data from real or simulation measurements 
can be used to train machine learning-based models. In 
recent years, along with the development of information 
technology, machine learning methods have become 
increasingly popular. These are algorithmic methods that 
require a large amount of training data. Typically, the 
disadvantage of their use is the high computational 
complexity, which is associated with a high demand for 
computing power [7-11]. The most popular machine 
learning methodsre artificial neural networks, SVM, logistic 
and linear regression, LARS and elastic net [12]. Artificial 
neural networks include, inter alia, classical networks, which 
include the multilayer perceptron, convolutional neural 
networks and recursive LSTM networks [13]. 

Tomography is the only known method of imaging areas 
of humidity inside walls. It is also a non-invasive, non-
destructive method. Commonly used methods are limited in 
scope and frequently destructive. This paper is mostly 

about describing the algorithmic methods that improve the 
quality and resolution of a tomographic image [14,15]. 

The negative economic effects of damp buildings are 
related to the fact that they are degraded by water. The 
subject of identifying the dampness in the walls of buildings 
is therefore important both from the point of view of society 
as a whole and from the point of view of an individual 
person. The authors' own contribution is the confirmation 
that both types of neural networks (CNN and LSTM) work 
well for tomographically identifying areas of moisture inside 
building walls where there is water damage.  

Materials and Methods 
Figure 1 shows the examined fragment of a wall of a 

historical building with a tomograph and electrodes applied 
to the wall. The tomograph with electrodes was entirely 
designed and manufactured in the research and 
development center of Netrix SA. It is a prototype unit. 

 

 
 
Fig.1. The measuring station equipped with an electric tomograph 
and two metal strips with 16 electrodes each 

 
 
Fig.2. View of a fragment of the wall - a photo taken with an 
ordinary camera 
 

Figures 2 and 3 show the same fragment of a building 
wall, but the photograph in Figure 1 was taken with an 
ordinary photosensitive camera. Figure 3 shows the same 
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wall as seen in infrared light. There are significant 
temperature differences in the range from 17.9 to 22 
degrees Celsius. 

 

Fig. 3. View of a fragment of the wall - infrared photo 
 
Damp surfaces evaporate more intensively, so their 

temperature is lower than that of dry surfaces. On this 
basis, it can be assumed that the lower the temperature, the 
more damp the wall surface is. The key word here is 
"surface". While infrared photography may serve as an 
approximate indicator of the moisture content of the 
external wall coatings, it does not answer the question 
about the distribution of moisture under their surface. 

The tomograph used consisted of 32 electrodes 
arranged on two metal strips, each with 16 sensors. The 
electrodes are specially designed. Thanks to soft elements 
such as rubber and sponge, good contact is ensured on the 
uneven and porous surface of the brick wall. Care was also 
taken to minimize the contact resistance of the wall with the 
electrodes. 

Using 32 electrodes made it possible to obtain 448 
voltage measurements. Such a number of measurements is 
possible thanks to the multiplexer built into the tomograph, 
which switches the electric current source successively to 
individual electrodes and measures the voltage on a single 
electrode, which is also changed before each subsequent 
measurement. So, the whole measuring cycle is a set of 
measurements that are done in the right order. Therefore, 
since we are dealing with measurement cycles, the 
measurements within a given cycle form a measurement 
sequence consisting of 448 measurements, which in turn 
explains the use of the LSTM network. LSTM networks are 
great for making predictions about time series and data 
sequences because they can learn a lot from past trends.  

The general model of the neural networks implemented 
can be written as 448 → 𝐶𝑁𝑁 → 10752 and 448 → 𝐿𝑆𝑇𝑀 →
10752. The 3D output image is created on a mesh of 10752 
tetrahedral finite elements. The measurement cases were 
generated using an algorithm that was created. It was 
necessary in order to obtain the appropriate number of 
observations to train the neural networks. The training set 
consisted of 30,000 observations. The algorithm solves a 
forward problem, i.e., on the basis of a randomly assigned 
moisture distribution in the tested fragment of the wall, the 
voltages between the individual pairs of electrodes are 
calculated. The research used the Eidors toolbox, which 
cooperates with the Matlab software [12].  

Figure 4 shows the LSTM network architecture used in 
the research. LSTM networks are adapted to take into 
account many time steps, however in this case one 
measurement cycle constitutes one time step. This 
determines the appearance of Figure 4. Figure 5 shows the 
convolution method in the sequential (1D) layers of the 
CNN network. One value is created from a three-element 
filter. The main purpose of CNNs is to classify images. In 
this case, the regression problem is solved, and the input 
set is a vector, not an image.  

 

 
 

Fig. 4. The architecture of LSTM networks used 
 

 

Fig. 5. Sequential layer convolution in CNN 
 

Table 1 shows the seven layers of the CNN network. 
The first layer is sequential and contains 448 channels. The 
second layer is a weave and contains six 112-element 
filters. The third layer is ReLu, which zeros the negative 
values. The next layer is used to normalize the mini-
batches. Layer 5 is global max pooling, which does 
downsampling by outputting the maximum time dimension 
of the input. The sixth layer is a fully connected layer, which 
in fact, acts as a multilayer perceptron with no transfer 
function, i.e., one which only sums up the products of 
weights and input values. The last layer is the regression 
layer that computes the half-mean-squared-error loss for 
regression tasks. 

 

Table 1. Layers of the CNN network 

 

Table 2 provides a description of the LSTM network 
layers. As with CNN, the first layer is sequential. It is 
aligned with a vector of 448 measured values. The second 
layer is a bidirectional LSTM with 2200 hidden units. The 
last two layers are the fully connected layer and the 
regression layer. The tasks of these layers are analogous to 
those of CNN. 

 

Table 2. Layers of the LSTM network 
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The graphs in Figure 6 show the training performance of 
CNN and LSTM networks. The regular shape of the 
hyperbola and the lack of fluctuations show that the learning 
process is going in the right direction and give us a strong 
reason to believe that there is no overfitting. 

 

 
 
Fig.8. Tomographic distribution of moisture inside the wall 
generated by the CNN network based on the real measurement 

 

 

    
 (a) (b) 

 
Fig.6. The training performance of neural networks:  
(a) – CNN, (b) - LSTM 
 

The vertical axis shows the root mean square error 
(RMSE) values. The RMSE is calculated according to the 
formula (1) 

Case No. Pattern CNN LSTM 

#1 

 
 (a.I) (b.I) (c.I) 

#2 

 
 (a.II) (b.II) (c.II) 

#3 

 
 (a.III) (b.III) (c.III) 

#4 

 
 (a.IV) (b. IV) (c. IV) 

Fig. 7 Reconstructions obtained from simulation-generated measurements 
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(1)  RMSE ൌ ට∑ ሺ௬೔ି௬ො೔ሻమ
೙
೔సభ

௡
 

where 𝑦௜ is the reference value of the i-th finite element of 
the reconstruction, 𝑦ො௜ is the reconstruction value, and n is 
the total number of the image voxels (tetrahedrons). 
 
Results 

Figure 7 shows the comparative results of four selected 
four simulation test cases. The "Pattern" column contains 
reference images, while the next two columns contain 
reconstructions obtained using the CNN and LSTM 
methods, respectively. To increase the objectivity of the 
assessments, the reconstruction index analysis based on 
two quantitative criteria – the mean square error MSE ൌ
∑ ሺ∆𝑦௜ሻ
௡
௜ୀଵ

ଶ /𝑛 and the image correlation coefficient (ICC) – 
was used. Formula (2) was used to calculate ICC metric 

 

(2)  ICC ൌ
∑ ሺ௬೔ି௬തሻ
೙
೔సభ ൫௬ො೔ି௬ොത൯

ඨ∑ ሺ௬೔ି௬തሻమ
೙
೔సభ ෍ ൫௬ො೔ି௬ොത൯

మ೙

೔సభ

 

where 𝑦௜ is the reference of the i-th voxel, 𝑦ො௜ is the value 
of the reconstructed voxel, 𝑦ത is the mean reference 
distribution, and 𝑦ොത is the average distribution of the voxels 
reconstructed. The smaller the MSE is and the closer to 1 
the ICC is, the better the reconstruction is. The results are 
presented in Table 3, which corresponds to Figure 7. The 
CNN method outperformed LSTM in cases II and III, while 
in cases I and IV the LSTM method turned out to be better.  

 
Table 3. Indicators characterizing the quality of reconstructions for 
individual methods and observations. 

Observation Indicator 
Methods 

CNN LSTM 

I 
MSE 8.58 6.32 
ICC 0.89 0.9 

II 
MSE 3.33 4.69 
ICC 0.87 0.85 

III 
MSE 6.40 8.67 
ICC 0.83 0.79 

IV 
MSE 13.31 12.19 
ICC 0.77 0.78 

 
Figure 8 shows an example of an EIT reconstruction 

based on actual measurements with the use of CNN. Due 
to the lack of a reference image, the correctness of the 
reconstruction cannot be verified. To do this, a direct 
method should be used (e.g., drying-weighing method), 
which, however, would injure the wall. Indirect point-by-
point methods are less accurate (e.g., dielectric or 
microwave methods), so image validation was based on 
infrared images (see Figure 3). 
 
Conclusions 

The conducted comparative experiments have shown 
that both LSTM and CNN networks can be successfully 
used to convert measurements into images in EIT in the 
problem of moisture detection in building walls. Visual 
(subjective) observation of the images in Figure 7 confirms 
the results obtained with the use of quantitative (objective) 
indicators. Networks with simple architecture were used in 
the research. CNN contained only one convolution layer, 
and the LSTM network contained only one biLSTM layer. 
Despite this, it was quite easy to train effective machine 
learning-based models. In the future, research will focus on 
how to choose the best reconstruction techniques by taking 
into account different criteria and model parameters. 
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