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Identification of inclusions with LDA in the EIT

Abstract. The article presents a method using probes placed on one side, which were used to collect measurements in electrical tomography on the
presence of inclusions in the object. Linear discriminant analysis was used for this purpose. The results of the linear discriminant analysis method
are presented. The presented algorithm was used in the process of converting the electrical input values into conductance, which are represented by
the pixels of the output image.

Streszczenie. W artykule zostata zaprezentowana metoda wykorzystujgca sondy umieszczone po jednej stronie, ktore postuzyty do zbierania
pomiaréw w tomografii elektrycznej na temat wystepowania wirgceri w obiekcie. W tym celu zostata wykorzystana Liniowa analiza dyskryminacyjna.
Przedstawiono wyniki badari nad metodg liniowg analizg dyskryminacyjng. Przedstawiony algorytm zostat wykorzystany w procesie konwersji
wejsciowych wartosci elektrycznych na konduktancje, ktore sg reprezentowane poprzez piksele obrazu wyjsciowego (Identyfikacja inkluzji za

pomoca LDA w EIT).
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Introduction

The main purpose of discriminant analysis (pattern
classification) is to find a classification rule [1], [2]. Mainly,
the task is to determine membership in a certain class on
the basis of observations of the independent variable. The
decision on class membership is made based on
knowledge of the distribution of the independent variable
and the distribution of class apriori.

There are many methods for solving optimization tasks
in inverse problems [3-11].To create the classification rule
regarding whether the finite element belongs to inclusion or
background for each finite element, we define the following
objects: learning data set as D = {(x;,y,):x; € R™,y; €
{0,1},1 < i < n} and probabilistic space as (Q,F,P). Each
component (x;,y;) of learning set D is created as follows:
x; € R™ denotes measurements obtained from sensors, but
y; € {0,1} denotes membership of finite element to
background when y; = 0 or to inclusion when y; = 1.

The main aim of reconstruction is creating the classifier
f:R™ — {0,1}, where based on measurement from sensors,
we can designate membership of finite element to inclusion
or background. In the presented case, the LDA was used to
define the classifier. Let Y be a random variable with
discrete distribution Y: Q—{0,1} We assume that the
conditional distribution f(x)=P(X=x|Y=k) of the random
variable X is the normal distribution N(uk,2x) for ke{0,1}. We
define the apiori distribution of the random variable Y as

Nk
(1) me=
where n;, = #{i:y; = k} oraz my + m; = 1.

We construct the decision rule based on Bayes' theorem
and
(2) P(Y = k|X = x) = LG

Yiofi(OM;
for k € {0,1}.

When determining class membership based on equation
(1), we compare the values of f(x)Tk, a larger value of the
product for k means a higher probability that the random
variable Y will take the value of k (i.e., observation x
belongs to class k) [2], [12], [1]-

For linear discriminant analysis, we assume that the
covariance matrix of the random variable X for each group
is identical, i.e. 2y =X, = 2.

The conditional distribution of the random variable X
belonging for class k, ke{0,1} is given by the formula
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From equation (2), poring the probabilities of belonging
to two different classes sufficiently analyze the logarithm of
the quotient of these probabilities, ie.
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The function
(5)  8;(x) =logm; +xTE -~ ul 57y

is called a linear discriminant function for a class
ke{0,1}.

We define the plane separating the two classes as
H={x€eR™PY =1]X=x) =P =0|X =x)} and using
that formula (4) and (5) we have
(6) H ={x € R™: §;(x) = §p(x)}.

The plane H splits the entire transpose R™ into two
separable sets, where the membership of the observed
signal to a set is equivalent to the membership of the
corresponding class.

In view of the above, we can present the decision rule in
the form of
M p=fh B@>=ae,_

8,(x) < 8y (x) argmax & (x).

ke{0,1}
As estimators of the unknown parameters of the
distributions of observations for each class, we determine
as follows:
expected values

N 1
(8) Hi = n_kZi:yizk Xi

for ke{0,1};
covariance matrix
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In EIT, the predictors are highly correlated, so to
overcome the problem of the singularity of X matrix, it is
necessary to use regularization techniques [13-15].

2ROC

We determine the probability of inclusion for each
element based on the readout X. The probability of
inclusion will occur when P(Y=1|X) according to equations
(1)-(2) and assume
(10)

) inclusion, P(Y =1|X) >=1

Area membership = {Background, PY=0|X) <l

for level 1€(0,1).

Basic terminology and coefficients describing the
recognition of inclusions in the field of view. In the following
discussion, we take the absence of a trumpet in the finite
element location as the negative case (N), while the
occurrence of inclusion is the positive case (P). For our
considerations in the confusion matrix, we determine the
values: TP (True Positive) - the number of finite elements
for which inclusions were correctly recognized, TN (True
Negative) - the number of finite elements for which the
absence of inclusions was correctly recognized, FP (False
Positive) - the number of finite elements without inclusions
for which they were recognized as having inclusions ( false
alarm), FN (False Negative) - the number of finite elements
with inclusions for which they were recognized as having no
inclusions.

Table 1. Matrix of confusions

Positive case Negative case

Positive Prediction TP FP

Negative Prediction FN TN

The basic coefficients are determined as follows
TP+ TN

A = )
CUraY = TP Y TN + FP + N
TruePositiveRate = Sensivity = ————,
ruerositiverxate ensivi y TP n FN

Specificity = 1 — FalsePositiveRate ;m,

PositivePredictiveValue = ——,
ositivePredictiveValue TP T FP
NegativePredictiveVal il
egativePredictive aue—TN_I_FN,
TP +FN
TP+ TN+ FP +FN’
TP

DetectionRate =

Prevalence =

TP +TN + FP + FN’
TP + FP

DetectionPrevalence =

TP+ TN + FP + FN’
Sensivity + Specificity
BalancedAccuracy = )

FalseAlarmRate = TP ¥ FP'

Analyzing the above, the Accuracy value is the portion
of the viewing area that has been correctly recognized by
the model. It is also one of the measures that directly shows
the correctness of recognition.

In tomography for image reconstruction, it is necessary
to describe the ability to find inclusions in the visual area.
To determine the ability of a classifier based on the use of
logistic regression ([16,17]), a curve describing the
operational characteristics of the receiver (ROC curve) is
determined. This curve shows the relationship between
sensitivity and specificity during reconstruction. The
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diagonal line in the ROC plot describes the strategy based
on guessing inclusions during reconstruction. If the curve is
above the diagonal, the identification technique is clearly
superior to guessing. The area under the curve in the
literature is called the AUC (Area under ROC curve) and
denotes a measure of predictability.

3 Examples
3.1 Field of view
Basic properties of the field of view:
- Number of electrodes: 8;
- Type of electrodes: linear;
- Number of nodes: 848;
- Number of finite elements: 1555.
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Fig.1. Area of reconstruction

3.2 Example reconstructions
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Fig.2. Example 1
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e E BoE 3 BoEE Table 2: Basic characteristics of the reconstruction of 3 first
Fig.8. Example 4 examples
ROC curve Exa;‘nple Exarz‘nple Exagnple
- 100 Accuracy 0.832 0.970 0.950
-‘E' Sensitivity 1.000 0.960 1.000
:.E 018 Specificity 0.829 0.971 0.950
2 Pos Pred 0.112 0.348 0.274
® Value
& 05° Neg Pred 1.000 0.999 1.000
.5 Value
2 Detection 0.021 0.015 0.019
o 02
® Rate
Z AUC 0.946 0.990 0.981
009 Kappa 0.170 0.499 0.412
0.00 025 050 075 100 chi-squared | 259.004 | 40.196 | 75.013
False Positive Rate (1-Specificity) p.val 0.000 0.000 0.000

Fig.9. Analysis ROC for example 4
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Table 3: Basic characteristics of the reconstruction of 3 last
examples

Example | Example | Example
4 5 6
Accuracy 0.943 0.978 0.987
Sensitivity 0.875 0.130 1.000
Specificity 0.944 0.991 0.987
Pos Pred 0.198 0.176 0.667
Value
Neg Pred 0.998 0.987 1.000
Value
Detection 0.014 0.002 0.026
Rate
AUC 0.965 0.975 0.999
Kappa 0.306 0.139 0.794
chi- 74.557 0.735 18.050
squared
p.val 0.000 0.391 0.000
Summary

Analyzing the probability plot of the finite element
membership of the inclusion area, it is impossible to
determine the boundaries of the inclusion accurately.
Electrodes are located on one side of the viewing area. If
the inclusion is located in the lower part below electrode 1
and the upper part above electrode 8, then or from Figures
1 and 4 it is clear that the position of the inclusion cannot be
accurately determined. -The signals from the electrodes are
highly correlated. This causes problems in estimating the
apiori distributions of the signals belonging to the
corresponding classes.
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