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Convex optimization model for Network Reconfiguration of 
Smart Grids 

 
 

Abstract. This study proposed a smart grid reconfiguration strategy that takes technical aspects into account. Convex optimization is used to answer 
the strategy. We find original quadratically constrained and second-order cone approximations to power flow in radial networks during the derivation 
of each model. Using standard commercial software, the proposed formulation guarantees global optimality with reliable and efficient outcomes. We 
use IEEE 33 and add DGs to model active distribution systems to evaluate the proposed method. The simulation findings show that the proposed 
method is capable of solving reconfiguration efficiently. 
 
Streszczenie. W badaniu tym zaproponowano strategię rekonfiguracji inteligentnej sieci, która uwzględnia aspekty techniczne. Optymalizacja 
wypukła służy do odpowiedzi na strategię. Znajdujemy oryginalne kwadratowe ograniczenia i przybliżenia stożka drugiego rzędu do przepływu mocy 
w sieciach promieniowych podczas wyprowadzania każdego modelu. Przy użyciu standardowego oprogramowania komercyjnego proponowana 
formuła gwarantuje globalną optymalizację z niezawodnymi i wydajnymi wynikami. Używamy IEEE 33 i dodajemy DG do modelowania aktywnych 
systemów dystrybucji w celu oceny proponowanej metody. Wyniki symulacji pokazują, że proponowana metoda jest w stanie skutecznie rozwiązać 
problem rekonfiguracji. (Model optymalizacji wypukłej dla rekonfiguracji sieci inteligentnych sieci) 
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Introduction 
 Power distribution reconfiguration is an essential 
component of modern power system engineering because it 
supports the efficient and effective delivery of electrical 
power to end users. The technique involves changing the 
configuration of electrical power distribution systems by 
selecting open or closed switch combinations that enhance 
specific performance criteria while maintaining a radial 
network topology [1], [2]. Branch exchange procedures had 
been employed for handling reconfiguration [1]. The main 
goal of power distribution reconfiguration is to increase the 
efficiency and reliability of the power system. Owaifeer et al. 
[3] divided reconfiguration optimization into three 
categories: heuristics algorithms, soft computing (SC), 
mathematical programming, and mathematical 
programming. 
 Distribution network reconfiguration can be carried out 
using a heuristic algorithm, as demonstrated in studies 
conducted by [4]-[6]. In these studies, the selection of 
switches is used to determine the best configuration by 
opening all the switches, then closing the switches one by 
one and calculating the objective function. As a result, the 
best configuration is selected based on the best objective 
function. This method is simple and does not require 
complicated computations. However, extensive 
computational processing is still necessary because the 
load flow needs to be calculated at every switching step. 
 Soft computing techniques are widely used in power 
systems, with meta-heuristic optimization methods being 
particularly popular for network optimization [7]-[13]. One 
advantage of meta-heuristic optimization is that it can 
provide a global optimum multi-objective solution while 
searching for the best local solution in each iteration. 
However, when applied to power systems with numerous 
constraints that must be met, achieving global optimality is 
not always possible, and extensive computational time may 
be required.  
 Mathematical Programming (MP) was rarely used to 
handle reconfiguration problems prior to the development of 
sophisticated solvers and high-speed processors. This is 
due to the fact that finishing reconfiguration optimization 
with MP takes more computational time than heuristic and 
soft computing methods. Nonetheless, MP has a substantial 

advantage over a direct method to finding the best solution. 
A direct method to the reconfiguration issue entails defining 
the objective function's mathematical equation, power flow, 
and constraints. The MP technique used is determined by 
the objective function. In [14], for example, mixed-integer 
programming (MIP) was used to determine the minimum 
blackout and maximum power values for the de-energized 
region while accounting for losses and reactive power.  
 Cavalcante et al. used two kinds of MP algorithms in 
[15]: one used Mixed-Integer Linear Programming (MILP) to 
find the optimal configuration value, and the other used 
nonlinear programming (NLP) to find the optimal load 
shedding value. [3] used MILP in 2017 to determine the 
minimum value of reconfiguration costs while accounting for 
reactive power and losses but not as an objective function. 
However, radiality constraints are imposed in distribution 
network optimization issues, which are nonlinear problems 
[16]. R.A. Jabr [17] used mixed-integer nonlinear 
programming to solve this issue. Some recent research has 
successfully converted the distribution network 
reconfiguration problem, which was initially a MINLP, into a 
convex optimization [18]-[19]. [20] effectively modeled 
expansion planning using mixed-integer quadratically-
constrained programming. They suggests using mixed-
integer second-order cone programming (MISOCP) to solve 
the mathematical model formulation quickly for an optimal 
solution. 
 This research concentrates on radial network 
reconfiguration to optimize performance using MISOCP, 
which ensures global optimality. The models can be easily 
solved and simulated using Python and generally available, 
powerful solver software. 
 The remainder of this paper is organized as follows. We 
formulate in Section Model and Problem Formulation to 
solve the Distribution Network Reconfiguration problem. We 
simulate and analyse in Section Simulation and Result. 
We conclude in Section Conclusions.  
 
Model and Problem Formulation 
 This formulation assumes that the network is a balanced 
three phases system. Figure 1 illustrates the line flow of a 
network.  
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Figure 1. Illustration of line flows in a network 
 
 The reconfiguration model is presented in this section. 
Two parts will be modeled mathematically. The objective 
function and constraints  will be discussed.  
 
1. Objective Function 
The objective function is given by Equation (1). That is 
minimum losses.  
 
(1) Min ∑ 𝑃௟௢௦௦௦௘௦

௡
௜ୀ଴  Min  

 
2. Constraints  

The active power balance constraint is given by 
Equation (2). The active electricity flowing into bus i is 
represented by Pki. Pji, on the other hand, indicates the 
active power flowing out of bus i. 𝑃௜

ீ represents active 
power production at bus i. The resistance multiplied by the 
current squared ൫𝑅௜௝𝐼௜௝

௦௤௥൯ is also used to calculate 
operational losses. 
 

(2)                         ∑ 𝑃௞௜  െ  ∑ ൫𝑃௜௝ ൅ 𝑅௜௝𝐼௜௝
௦௤௥൯ ൅௜௝೗௞௜೗

𝑃௜
ீ                        ൌ 𝑃௜

஽ ሺെ𝑦௜ሻ   Ɐ௜  ௕   
 

The reactive power balance constraint is given by 
equation (3). Qki denotes the reactive power flows that 
become bus i. Qji, on the other hand, depicts the reactive 
power flows from bus i. 𝑄௜

ீ represents the active power 
production at bus i. Reactive losses are determined by 
multiplying reactance by current squared ൫𝑋௜௝𝐼௜௝

௦௤௥൯. 
 
(3)           ∑ 𝑄௞௜  െ  ∑ ൫𝑄௜௝ ൅ 𝑋௜௝𝐼௜௝

௦௤௥൯ ൅ 𝑄௜
ீ ൌ௜௝೗௞௜೗

𝑄௜
஽ ሺ1 െ 𝑦௜ሻ     Ɐ௜  ௕               

The voltage drops are given by Equation (4). bij is an 
auxiliary variable that takes different values when the circuit 
ij is open or closed. 
 
(4) 

 𝑉௜
௦௤௥ െ 𝑉௝

௦௤௥ ൌ 2൫𝑃௜௝𝑅௜௝ ൅ 𝑄௜௝𝑋௜௝൯ ൅ 𝑍௜௝
ଶ  𝐼௜௝

௦௤௥ ൅ 𝑏௜௝    Ɐ௜ ௕    

 For each line, equation (5) reflects Kirchhoff's second 
law (KVL). In (5), the initial relationship is transformed into 
the nonlinear model-satisfying second order conic 
constraint. Those are accurate according to [20], 
considering that the objective function is linear and convex. 
Aside from that, the network graph is connected, and the 
issue is feasible. 

 
(5)                  𝑉௝

௦௤௥ 𝐼௜௝
௦௤௥ ൒ 𝑃௜௝

ଶ ൅ 𝑄௜௝
ଶ        Ɐ௜௝  ௟ 

 
 The operational limit of voltage is given in equation (6) 
and, the current limit is given in equation (7). 
                          
(6)                                   𝑉ଶ ൑ 𝑉௜

௦௤௥ ൑ 𝑉ത ଶ  Ɐ௜      ௕ 
(7)                                   |𝐼௜௝

௦௤௥| ൑ 𝐼௜௝
ଶ 𝑥௜௝    Ɐ௜௝  ௟ 

 When some parts of the network cannot be recovered, 
take care of the topology radial. Assumptions are made by 
employing fake substations at nodes, artificial nodes, and 
artificial branches, resulting in an unreal power flow as in 
constraint. (8). 
 The fictitious power source restriction is present in 
constraints (9)-(12). The unreal substation flow generates 
fictitious electricity. (9). As a result, constraint (10) is a 
fictitious power transfer restriction. Constraints (11) and (12) 
require that no active or reactive electricity be present at a 
fictitious substation. 
 
(8)         ∑ 𝐻௞௜  െ  ∑ 𝐻௜௝  ൅ 𝐻௜

ீ
௞௜೗೓

 ൌ 𝑦௜௞௜೗೓
   Ɐ௜  ௕  

(9)                                          𝐻௜
ீ ൌ 0      Ɐ௜  ௕ , 𝑖  𝑆௙ 

(10)                                ห𝐻௜௝ห ൑ 𝑀 𝑥௜௝           Ɐ௜௝  ௟௛  
11)                                                         𝑃ௌ೑

ீ ൌ 0  
(12)                                                 𝑄ௌ೑

ீ ൌ 0 
 
 To improve the solution process, additional constraints 
have been introduced. Limitation (13) is required to 
accelerate the optimization procedure. This is accomplished 
by attaching the load node to a single circuit. Constraint 
(14) states that when no branch is closed, the active power 
in one branch must be zero, and its value must be less than 
the highest apparent power in the branch. The same is true 
for reactive strength. (15). Constraint (16) states that if the 
circuit is operational, the values yi and yj must have the 
same value. Constraints (17) and (18) reflect the decision 
variables' binary nature. Constraints (19) ensure feasibility 
(4), and the circuit must work in accordance with Kirchhoff's 
second law. If this is not the case, an arbitrary number must 
be used to satisfy. 
 
(13)              ∑ 𝑥௜௝   ൅   ∑ 𝑥௞௜  ൒ 1          ௞௜೗೓௜௝೗೓

Ɐ௜  ௕ 

(14)                           ห𝑃௜௝ห ൑ 𝑉ത𝐼௜̅௝𝑥௜௝  Ɐ௜௝  ௟                                         

(15)                    ห𝑄௜௝ห ൑ 𝑉ത𝐼௜̅௝𝑥௜௝    Ɐ௜௝  ௟                  

(16)                      ห𝑦௜ െ 𝑦௝ห ൑ ൫1 െ 𝑥௜௝൯      Ɐ௜௝  ௟              

(17)               𝑥௜௝ ሼ0,1ሽ        Ɐ௜௝  ௟௛                                        

(18)                   𝑦௜ ሼ0,1ሽ         Ɐ௜  ௕   

(19)           ห𝑏௜௝ห ൑ ൫𝑉ത ଶ െ 𝑉ଶ൯൫𝐼 െ 𝑥௜௝൯      Ɐ௜௝  ௟  

 
Simulation and Result 
 This section presents case studies on modified IEEE 33-
bus distribution networks. The computational tasks were 
performed on a personal computer with an Intel Core i5 
Processor (2.70 GHz) and 8-GB RAM, and the code was 
implemented using Python and solved via the GUROBI 
solver. 
 The following criteria are established: The substation 
voltage was set to 1 pu, with minimum and highest voltages 
of 0.95 pu and 1.05 pu, respectively. There is a 4.00 pu 
maximal current flow. To compare the voltage obtained 
from the optimization result with the loadflow in order to 
verify that the proposed technique is accurate. The mean 
square error (MSE) (20) was used to evaluate validity 
accuracy. magnitudes of voltage reconfiguration were 
compared with AC power flow. The results are very similar 
and the MSE value of reconfiguration for the 33-bus test 
system is 1.2e-11. 
 

(20)        MSE ൌ  
ଵ

௡
 ∑ ሺ𝑥పෝ െ 𝑥௜ሻଶ ௡

௜ୀଵ  

 The IEEE-33 bus radial distribution scheme is used in 
this test system. The load is made up of a substation, 33 
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buses, and 37 branches, according to the data from 
reference [21]. On buses 24, 16, and 31, three DGs have 
been added as modifications. 32 sectionalizing switches are 
represented by straight lines in Fig. 2, and five tie switches 
are marked by dashed lines. With a total active capacity of 
3715 kW and a total reactive power load of 2300 kVar, the 
voltage and MVA bases are 12.66 kV and 1 MVA, 
respectively. Each DG has a 300 kVA rating. 
 Figure 3 shows the VP results for each bus before and 
after NR under the assumption of a typical load scenario. 
The lowest voltage level is 0.950 p.u. before and after the 
network change, correspondingly. According to the findings, 
the real power loss is reduced by 69.68 kW when compared 
to the base case determine of 83.25 kW. This means that 
13.56 kW of real electricity can be saved when compared to 
the current network topology. When compared to total 
power loss at normal load, the percentage decrease is 
44.42%. The MISOCP method closed all tie switches while 
leaving the sectionalizing switches S6-7, S8-14, S10-11, 
S27-28, and S31-32 open. The optimization calculation took 
29 seconds in total. The results are summarized in Table 1. 

 
Fig.2. Modified IEEE 33-bus test system 

 
 

Fig.3. Voltage Profile before and after network reconfiguration for 
33-bus test system 

Table 1. Result Comparison of 33-bus system 
 Original Network Optimization using 

MISOCP 
Opened Switch S1-43, S13-21, S15-46, 

S50-59, S27-65

S6-7, S8-14, S10-11, S27-28, 

S31-32

Losses kW 83.25 kW 69.68 kW 
Losses kVar 54.36 kVar 54.5 kVar 
Min Voltage 0.95 pu 0.968 pu 
Max Voltage 1 pu 1 pu 

Time computing 12 s 29 s 
Code  Python Python 
Solver - GUROBI 

 

Conclusions 
 We proposed MISOCP-based algorithms to reduce 
losses while increasing efficiency and accuracy in feeder 
reconfiguration. Our algorithm has been shown to handle 
network reconfiguration issues optimally. Furthermore, we 
showed the efficacy of our algorithms using simulations on 
a 33-bus test system. Several constraints are included in 
the optimization method, and the fundamental studies 
conducted include load flow analysis and voltage profile 
improvement. According to the results, our suggested 
algorithm is efficient in terms of global optimality and 
computation time. 
 
Nomenclature 
Indices and sets 

௕ Sets of all bus 
௛ Sets of all fictitious line 
௟ Sets of all line 

Variables 
𝐻௞௜ The artificial power flow in line ki 
𝐻௜

ீ The artificial generation at node i 
𝐼௜௝

௦௤௥ The square of the current flow magnitude in line ij 

𝑃௜௝ The active power flows in line ij 
𝑃௜

ீ The active power generation in node i 
𝑄௜௝ The reactive power flows in line ij 
𝑄௜

ீ The reactive power generation in node i 
𝑉௜ The voltage in node i 
𝑏௜௝ The binary variable, the value is opposite of the 

value of 𝑥௜௝  
𝑥௜௝  The binary variable, the value = 1 if the circuit ij is 

closed and 0 if the circuit is open  
𝑦௜ The binary variable, the value = 1 if the demands 

at node i are not supplied. and 0 if the demand 
fully met. 

Prameters 
    M A large multipliers 

𝑃௜
஽ The active power demand in node i 

𝑄௜
஽ The reactive power demand in node i 

𝑅௜௝ The resistance in line ij 
𝑋௜௝ The reactance in line ij 
𝑍௜௝ The impedance in line ij 
𝐼௜̅௝ The upper bound of current 
𝑉ത  The upper bound of voltage 
𝑉 The lower bound of current 

$𝐿𝑆 The cost of load shedding 
$𝐺𝑒𝑛 The cost of generation 
$𝐶𝑢𝑟 The cost of load curtailment 

Acronym 
DG Distributed Generation 
KVL Kirchhoff's Voltage Law 
MILP Mixed-Integer Linear Programming 
MINLP Mixed-Integer Non-Linear Programming 
MISOCP Mixed-Integer Second Order Cone 

Programming 
MP Mathematical Programming 
MSE Mean Square Error 
NLP Non Linear Programming 
SC Soft Computing 
VP Voltage Profile 

 

Authors 
Indri Suryawati received the BS and the MS degree in electrical 
engineering from Institut Teknologi Sepuluh Nopember (ITS) 
Surabaya, Indonesia. She is currently on study leave and pursuing 
a Doctoral degree in the same department. E-mail: 
indrisuryawati@gmail.com 
Ontoseno Penangsang received the  
BS degree in 1974 from the department of Electrical Engineering 
ITS-Surabaya, Indonesia, the M.Sc in 1976 and Ph.D degree in 
1983 from the department of Electrical Engineering, University of 
Wisconsin-Madison, USA. He is a lecturer and professor in 
Electrical Engineering, ITS-Surabaya, Indonesia. His research 
interests include GIS for Power System, power quality, power 
distribution system, optimization, and renewable energy resources. 
E-mail: zenno_379@yahoo.com  



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 99 NR 10/2023                                                                             137 

Rony Seto Wibowo (S'08) received a BS degree in electrical 
engineering from Institut Teknologi Sepuluh Nopember (ITS) 
Surabaya, Indonesia, and an MS degree from Institut Teknologi 
Bandung, Indonesia. The Ph.D. degree at the Department of 
Artificial Complex Systems Engineering, Hiroshima University, 
Higashihiroshima, Japan., He joined ITS Surabaya, Indonesia, in 
2000. His research interest is in power system operation and 
planning. 

 
REFERENCES 

[1]. M. Baran and F.Wu, “Network reconfiguration in distribution 
systems for loss reduction and load balancing,” IEEE Trans. 
Power Del., vol. 4, no. 2, pp. 1401–1407, Apr. 1989.  

[2]. H.-D. Chiang and R. Jean-Jumeau, “Optimal network 
reconfigurations in distribution systems—I: A new formulation 
and a solution methodology,” IEEE Trans. Power Del., vol. 5, 
no. 4, pp. 1902–1909, Oct.1990. 

[3]. Owaifeer, M.A., Al-Muhaini, M.: ‘MILP-based technique for 
smart-healing grids’, IEEE Trans. IET Generation, 
Transmission & Distribution., vol. 12 n. 10, 2018, pp. 2307 – 
2316 

[4]. McDermott, T.E., Drezga, I., Broadwater, R.: ‘A heuristic 
nonlinear constructive method for distribution system 
reconfiguration’, IEEE Trans. Power Syst., 1999, 14, (2), pp. 
478–483  

[5]. Gomes, F.V., Carneiro, S., Pereira, J.L.R., et al.: ‘A new 
heuristic reconfiguration algorithm for large distribution 
systems’, IEEE Trans. Power Syst., 2005, 20, (3), pp. 1373–
1378  

[6]. A. Augugliaro, L. Dusonchet, S. Mangione, An efficent greedy 
approach for minimum loss reconfiguration of distribution 
networks, Electric Power System Research, vol. 35, 1995, pp. 
167 – 176. 

[7]. Kumar, Y., Das, B., Sharma, J.: ‘Genetic algorithm for supply 
reconfiguration in distribution system with priority customers’, 
2006 International Conference on Probabilistic Methods 
Applied to Power Systems (PMAPS), Stockholm, Sweden, 
June 2006  

[8]. Huang, C.M.: ‘Multiobjective service reconfiguration of 
distribution systems using fuzzy cause-effect networks’, IEEE 
Trans. Power Syst., 2003, 18, (2), pp. 867–874  

[9]. J.Z. Zhu, Optimal reconfiguration of electrical distribution 
network using the refined genetic algorithm, Electric Power 
Systems Research, vol. 62, 2000, pp. 37 – 42. 

[10]. Oliveira, L.W., Oliveira, E.J., Silva, I.C., et al.: ‘Optimal 
reconfiguration of power distribution system through particle 

swarm optimization’. 2015 IEEE Eindhoven Power Tech, 
Eindhoven, Netherlands, July 2015  

[11]. Souza, S.S., Romero, R., Pereira, J., et al.: 
‘Reconfiguration of radial distribution systems with variable 
demands using the clonal selection algorithm and the 
specialized genetic algorithm of Chu–Beasley’, J. Control 
Autom. Electr. Syst., 2016, 27, (6), pp. 689–701  

[12]. Del Pizzo, A., Meo, S., Brando, G., Dannier, A., 
Ciancetta, F., ‘An energy management strategy for fuel-cell 
hybrid electric vehicles via particle swarm optimization 
approach’, International Review on Modelling and Simulations 
(IREMOS), (2014) 7 (4), pp. 543-553. 

[13].  Subramaniyan M., Subramaniyan S., Jawalkar 
V, Veerasamy M.:‘Fuzzy Satisfied Multiobjective Distribution 
Network Reconfiguration: an Application of Adaptive Weighted 
Improved Discrete Particle Swarm Optimization’, International 
Review on Modelling and Simulations (IREMOS), (2017) vol 10 
no 4. 

[14]. Nagata, T., Hatakeyama, S., Yasouka, M., et al.: ‘An 
efficient method for power distribution system reconfiguration 
based on mathematical programming and operation strategy’, 
Power Syst. Technol., 2000, 3, pp. 1545–1550  

[15]. Cavalcante, P.L., López, J.C., Franco, J.F., et al.: 
‘Centralized self-healing scheme for electrical distribution 
systems’, IEEE Trans. Smart Grid, 2016, 7, (1), pp. 145–155  

[16]. M. Lavorato, J. F. Franco, M. J. Rider, and R. Romero, 
“Imposing radiality constraints in distribution systems 
optimization problems,” IEEE Trans. Power Syst., vol. 27, no. 
1, pp. 172–180, Feb. 2012.  

[17]. R. A. Jabr, “Radial distribution load flow using conic 
programming,” IEEE Trans. Power Syst., vol. 21, no. 3, pp. 
1458–1459, Aug. 2006. 

[18]. M. Farivar and S. H. Low, “Branch flow model: 
Relaxations and convexification—Part I,” IEEE Trans. Power 
Syst., vol. 28, no. 3, pp. 2554–2564, Aug. 2013.  

[19]. N. Li, L. Chen, and S. H. Low, “Exact convex relaxation 
of OPF for radial networks using branch flow model,” in Proc. 
IEEE 3rd Int. Conf. Smart Grid Communications 
(SmartGridComm), Nov. 2012, pp. 7–12.  

[20]. J. F. Franco, M. J. Rider, and R. Romero, “A mixed-
integer quadratically-constrained programming model for the 
distribution system expansion planning,” Int. J. Elect. Power 
Energy Syst., vol. 62, pp. 265–272, 2014.  

[21]. S, H Dolatabadi ., et al :‘An Enhanced IEEE 33 Bus 
Benchmark Test System for Distribution System Studies ‘, 
IEEE Trans. Power Syst., vol. 36, no. 3, May 2021  

 
 


