
PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 99 NR 12/2023                                                                                    109 

1. Astrit HULAJ
1
, 2. Bahri PREBREZA

2*
, 3. Xhevahir BAJRAMI

2
 

University of Business and Technology (1), University of Prishtina (2) 
ORCID: 1. 0000-0002-4059-2034; 2. 0000-0003-1950-026X; 3. 0000-0002-6901-0122 

 
doi:10.15199/48.2023.12.20 

 

Compressing big data generated by IoT devices deployed along 
the green borderline 

 
 

Abstract. Deployment of the thousands of sensors along the green borderline the production of a large volume of data. The large volume of data 
can lead to unusual storage and transmission bandwidth requirements. The research presents an analytical and visual analysis of the performance 
of the data compression algorithms. The algorithms are modified and adapted for our research purpose, and the results are visualised graphically. 
This research includes a detailed analysis of data compression algorithms and will optimise the overall cost of storing data, and the link capacity. 
 
Streszczenie. Wdrożenie tysięcy czujników wzdłuż zielonej granicy produkcji dużej ilości danych. Duża ilość danych może prowadzić do 
nietypowych wymagań dotyczących przepustowości pamięci masowej i transmisji. W pracy przedstawiono analityczną i wizualną analizę działania 
algorytmów kompresji danych. Algorytmy są modyfikowane i dostosowywane do naszych celów badawczych, a wyniki są wizualizowane graficznie. 
Badania te obejmują szczegółową analizę algorytmów kompresji danych i zoptymalizują całkowity koszt przechowywania danych oraz 
przepustowość łącza. (Kompresja dużych zbiorów danych generowanych przez urządzenia IoT rozmieszczone wzdłuż zielonej granicy) 

 
Keywords: Data compression, Internet of Things (IoT), Green borderline, Sensors. 
Słowa kluczowe: Kompresja danych, Internet rzeczy (IoT), Zielona granica, Czujniki. 
 
 

Introduction 

Today Internet of Things (IoT) is a technological 
revolution. IoT refers to the billions of intelligent physical 
devices around the world that connect to the Internet and 
which can use to collect and share data. Devices in an IoT 
network represent an interface between the physical world 
and the world of electronic devices. These devices are 
sophisticated devices that can be used to detect or collect 
information in a physical environment, such as motion 
detection, temperature changes, image capture, pressure 
measurement, vibration detection, specific observations, 
etc.  

The application of IoT smart devices is expanding 
rapidly [1]. Today, we find smart IoT devices in almost every 
sphere of life, such as smart healthcare applications [2, 3] 
smart military surveillance, smart transportation monitoring, 
smart homes, smart cities, etc. In this research, we will 
focus on the application of IoT for surveillance purposes of 
the state green border. Sensor devices have aroused 
considerable interest in many applications and research. In 
particular, our focus is on multimedia sensors. Multimedia 
sensors are devices that use a camera through which 
sensors provide a view of their monitoring area. Therefore, 
the application of multimedia sensors to surveillance of the 
green borderline will offer some benefits. However, the 
application of multimedia sensors for this purpose is 
characterized by several challenges that we have 
addressed in this research. The green borderline due to its 
specifics is very delicate and an actual issue in terms of 
national security. The protection of green state borders is 
about national security. Border protection against attacks 
and threats of various kinds is vital for a state. Therefore, 
the use of multimedia sensors will provide surveillance of 
the green state borderline based on image capture 
techniques. However, these detection techniques are 
characterized by several challenges. Some of the 
challenges are: security authorities need to place 
multimedia sensors in areas not easily accessible, limited 
capacity of the link to carry them, insufficient storage 
capacity for images captured by IoT devices, security of 
collected data from IoT devices, the lifetime of multimedia 
sensors directly depends on their battery, etc. Therefore, 
data compression will directly affect the reduction of data 
size. Reducing the data size will also impact the reduction 
of the requirements for link and storage capacity. 

Problem description 

States constantly have problems of various natures 
regarding illegal crossings along state borders. Border 
problems differ from one state to another, depending on the 
configuration of the state borderline that its state has. The 
borderline of a state means the borderline that separates 
the territory of that state from other neighbouring states [4]. 
This border is also a state border. The state border of a 
country can be divided into land borders, water borders, 
and air borders. The land border is also known as the 
"green border" and means any borderline between that 
country and neighbouring countries, excluding official 
crossing points. The green border in many countries is the 
most problematic borderline to the application of 
surveillance and security systems [4]. Not infrequently, the 
green borderline includes delicate areas difficult to reach by 
the security authorities and areas that can easily use for 
illegal border crossings. Illegal border crossings can use for 
various purposes, such as illegal immigration, terrorism, 
arms and drug smuggling, etc. 

For securing the green borderline, the security 
authorities apply different techniques from conventional 
ones to the application of intelligent technology or IoT [5]. 
The application of these technologies along the state green 
line will characterize by some problems of various natures. 
Among these problems that can point out are the difficulties 
of deploying technology, coverage of the area with the 
Internet network, insufficient capacity of the transmission 
link, physical security of devices, electricity supply, etc. 
Many of these problems resolve with the application of 5G 
mobile technology. 5G technology offers unlimited data 
transmission capabilities within mobile operating end 
systems. The 5G technology has several features which 
other generations have not managed to contain as an 
extended range of movement, low connection 
establishment delay, greater transmission bandwidth, 
simultaneous connection of many devices, and highly 
reliable connection between different devices. In addition, 
5G technology offers ultra-low latency of 1 ms, 90% more 
power efficiency, 99.9% reliability of connection 
establishment, and a maximum data transmission speed of 
10Gbps. 

One of the many IoT devices that have aroused interest 
for application for border security purposes is the 
multimedia sensor. Multimedia sensors are the future 



110                                                                             PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 99 NR 12/2023 

technology that will impact solutions to many problems at a 
low cost [6]. The application of multimedia sensor 
technology to surveillance of the border green line will have 
multidimensional benefits. The low cost allows Figure 1 
presents a possible IoT devices deployment architecture 
along a state border green line. The network architecture of 
IoT devices divides into three parts. The first part includes 
the green border line along which deployment of IoT 
devices. The second part includes the end buildings of the 
police stations, which are closest to the green border. The 
third part of the network architecture is the central 
monitoring room, which houses will be the data centre [6]. 
The area along the green borderline will cover by the 
Internet network through the microwave network, namely 
with 5G technology. The communication between the police 
stations, the monitoring centre, and the data centre can do 
through the optical or microwave network. 
 

 
Fig. 1. The architecture of deployment of IoT devices along the 
green borderline [6] 
 

As you can see, along the green borderline, there can 
be thousands of IoT devices, and each device transmits 
data from the area it covers. The data, which each device 
transmits to the data centre, must be stored and analyzed. 
Uncompressed storage of such a large volume of data 
requires very large resources and may be unaffordable for 
security authorities.  
 

Research Methodology 

The data collected along the green borderline by IoT 
devices, through 5G technology, are sent to the main centre 
for other analysis. The data collected by IoT devices need 
compression to save data storage capacity. For data 
compression that is collected, we have chosen to compare 
the performance of the three most popular algorithms: 
Huffman, LZ77, and Run-Length Encoding. First, we saved 
the images captured by the multimedia sensors in a file. For 
comparison and analysis of the performance of the 
algorithms, we chose this file which contains a maximum of 
3600 image data. To make the performance measurement 
and algorithm comparison more attractive, we split this file 
into 11 other files through this partition: .jpg files with 1, 10, 
100, 300, 500, 1000, 1500, 2000, 2500, 3000, and 36000 
image data (the test remains the same for all algorithms 
across iterations). In [5, 6], you can read more about the 
types of sensors located along the green bounder line. We 
have written the algorithms in the Python programming 
language.  

 
Implementation of algorithms 

In this section, we will present the implementation of the 
algorithms and pseudo-codes. Algorithm 1 showed the 
pseudo-code of the Huffman algorithm. As seen in the 
pseudo-code presented in Algorithm 1, the Huffman 
encoding takes as input a set of n characters, present in 
pseudo-code with C character. Initially, all nodes are child 
nodes and contain the symbol, the frequency of the symbol, 

and optionally a connection to its child nodes. Bit '0' 
represents the left child while bit '1' represents the right 
child [7].  
 

Algorithm 1. Pseudo code for the Huffman Coding Algorithm 

procedure Huffman_Coding_Algorithm(Ch):      
     n ← Ch.size_of_text 
     Qu ← priority_queue() 
     for i ← 1 to n 
          n ← node_of_binary_tree(Ch[i]) 
          Qu.push_node(n) 
     end for loop 
     while Qu. size of_text() is not equal to 1 
          Zu ← new node_of_binary_tree () 
          Zu.left ← x_l ← Qu.pop 
          Zu.right ← y_r ← Qu.pop 
          Zu.frequency ← x_l.frequency + y_r.frequency 
          Qu.push(Zu) 
     end while loop 
     return Qu 
end procedure 

 

Priority queue Qu in pseudo-code is to hold nodes so 
that the node with the lowest frequency is extracted as the 
first node [7]. As long as there is more than one node in the 
queue, the two with the highest priority nodes are removed 
from the priority queue, and a new internal node Zu will 
create that has the two extracted nodes x_l and y_r as child 
nodes. The created internal node Zu now has a frequency 
equal to the sum of the frequencies of the two child nodes.  

 
Algorithm 2. Pseudo code for the Lempel-Ziv LZ77 
compression Algorithm 

procedure Lempel_Ziv_LZ77_Algorithm (chars):      
   while input is not empty do 
       prefix← the longest prefix of input that begins in the 
window 
       if a prefix exists then 
           dis← distance to start of prefix 
           ln← length of the prefix 
           char← the following prefix in the input 
        else 
           dis← 0 
           ln← 0 
           char← first char of input 
     end if loop 
       output (dis, ln, char) 
       discard ln + 1 char from the front of the window 
       s← pop ln + 1 char from the front of the input 
       append s to the back of the window 
    end while loop 
end procedure 

 
The new node created now will add to queue Qu in 

code. We have modified the code for the Huffman algorithm 
so that the output is not a printed string showing the 
encoding of the characters, but in the output, we get a list 
with two elements. The first element represents the number 
of bytes occupied by the decoding table, which stores both 
the character and the encoding of the characters. The 
second element represents the number of bytes of encoded 
text. If we were to create a format file for Huffman encoding, 
it would contain the table as a "header" and the content. In 
other words, the file would have a total size equal to the 
sum of these two.  

Algorithm 2 presents the pseudo-code for the LZ77 
algorithm. This algorithm starts by searching the window for 
the longest match at the start of the look-ahead buffer and 
outputs the pointer of that match [8]. As seen in the 
algorithm, the match pointer comes out as a triple of 
elements: dis - represents the offset, ln - represents the 
length of the match, and char - represents the next 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 99 NR 12/2023                                                                                    111 

character after the character match [9, 10]. If there is no 
match, the output of the algorithm is a null pointer (the 
offset and length of the character match will be: 0) [11], as 
well as the first character from the input. In the code for the 
LZ77 algorithm, we use the data compression class. For 
visualization, we wrote the method which opens the file with 
certain lines of data, reads it, and returns the number of 
bytes after compression. 
 
Algorithm 3. Run-Length Encoding Algorithm 

procedure Run_Length_Encoding_Algorithm(text) 
     compressed = “data_input” 
     i←0 
     while i is less than the length(text)  
          count ← 1 
          while i + 1 is less than length(text) and text[i] is ~ to text[i+1]  
               count ← count + 1 
               i ← i + 1 
          end while loop 
          compressed_text = string(count) + text[i] 
          i ←i + 1 
     end while loop 
     return compressed_text 
end procedure 

 

Algorithm 3 presents the pseudocode for the Run-
Length Encoding Algorithm. Algorithm 3 shows that a string 
of characters is inserted as input, and an output will be 
obtained as a compressed text. For each input character, it 
is checked whether that input character is inside the text, 
and this string character is compared to the next string 
character if it is the same. With the fulfilment of these 
conditions, a value that we set as a counter of the number 
increases, and for each iteration, we add the number of 
repetitions and the repeated character to the string that will 
be output. For example, ABBCCCD on input to output gives 
the result 1A2B3C1D. 
 

Results and discussion 

This section presented the results of testing the 
algorithms and analysing their performance. After testing 
and analysing three compression algorithms: Huffman, 
LZ77, and Run-Length Encoding, we have presented and 
visualized the results graphically through Python libraries 
and the interactive Jupyter Notebook platform. 

Space saving and execution time efficiency are the two 
most important factors for a compression algorithm. The 
performance of a compression algorithm depends to a large 
extent on the iterations in the data. To generalize the testing 
of algorithms, we have used the same data (image data) to 
test the three algorithms. We will compare the performance 
of the algorithms based on the following parameters: 
Compression ratio, compression factor, storage percentage, 
and compression time. The compression ratio is calculated 
through equation (1). Equation (1) gives the compression 
ratio between the compressed file and the original file 
(uncompressed file). 
 

(1)                 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 =
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎 𝑓𝑖𝑙𝑒

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑓𝑖𝑙𝑒
  

 
The compression factor is calculated through equation 

(2). Equation (2) gives the ratio between the original and the 
compressed file and at the same time is the inverse of the 
compression ratio. 
 

(2)                 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑓𝑠𝑐𝑡𝑜𝑟 =
𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑓𝑖𝑙𝑒

𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎 𝑓𝑖𝑙𝑒
  

 

The storage save percentage is calculated through equation 
(3) and represents the percentage of file size equation (3) 
and represents the percentage of file size reduction after 
their compression. 
 

(3)               𝑆𝑡𝑜𝑟𝑎𝑔𝑒(%) = (1 −
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑑𝑎𝑡𝑎 𝑓𝑖𝑙𝑒

𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑑𝑎𝑡𝑎 𝑓𝑖𝑙𝑒
) 

 

Execution time represents the time for which the 
algorithm has compressed the file. The test results of each 
algorithm, according to the measurement parameters, are 
given in the tables. The fields of each table are the number 
of lines of the image data, number of bytes in the original 
data, number of bytes in the compressed data, execution 
time in milliseconds, compression ratio, compression factor, 
and save percentage. We see in the results of the Huffman 
algorithm presented in Table 1 that we do not have any 
compression in the case of testing the algorithm with 1 and 
10 lines of image data. But, the file size increased after the 
compression file. 

 

Table 1. Huffman algorithm test results 

 
 

It is because the table which stores the characters and 
their encodings takes up extra space. So, for compressing 
so few rows, it is not worth creating this table. It does not 
mean that the algorithm does not work clearly for more lines 
of data to become acceptable data compression. For 
example, for 3600 lines of image data, a reduction of about 
42.19% of the space occupied by the original data was 
made. The execution time for 3600 lines of image data is 
approximately 90.31 milliseconds or 0.0931 seconds. 
Similarly, in Table 2, we present the results after testing the 
LZ77 algorithm for different numbers of lines of image data. 
Similar to the Huffman algorithm we do not have any 
compression with 1 and 10 lines of the image data. But 
even in this case, there is an increase in the space required 
to store the data images. It happens (as we mentioned in 
Huffman's algorithm) because the table that stores the 
characters and their encodings takes up extra space. 
However, for more image data, for example, 3600 lines of 
the image data, we have a space reduction of about 
37.17%. The execution time for 3600 image data is about 
65454,495 milliseconds or 65.45 seconds. 

 
Table 2. LZ77 algorithm test results 

 
 

In Table 3, we present the results after testing for the 
Run-Length Encoding algorithm. Unlike other algorithms, 
this algorithm for no test case, in other words, for any 



112                                                                             PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 99 NR 12/2023 

number of image data, from 1 to 3600, does not offer 
compression in data size but only requires an addition to 
the space required to store these data. This case best tells 
us that the compression algorithm should be adapted to the 
data that is compression. It is because we can see from this 
case that the discrepancy between them can increase the 
space required by 100% (for example, in this case, 
compression of image data, the need for space for storing 
after data compression is doubled). The reason for these 
poor results is that in natural language data, we do not often 
come across words where we have the same characters 
one after the other. So, although a well-known and well 
useful algorithm for specific data compression, it does not 
provide good results in compressing data in the natural 
language. The execution time for 3600 image data for this 
algorithm is about 253.32 milliseconds or 0.25 seconds. 
 
Table 3. Run-Length encoding algorithm test results 

 
  

The achieved results will also be presented in graphical 
form. For each algorithm, the results are presented through 
two types of graphs: a scatter graph and a bar graph. For 
each graph, the x-axis represents the number of data lines 
of images, while the y-axis represents the number of bytes. 
From the legend, we read the dots or columns and look at 
the compression level for each test. The data from Table 1 
for the Huffman algorithm can be seen graphically in Figure 
2 and Figure 3.  

 

Number lines of images data

B
y

te
s

Fig.2. Graph (scatter) of results after testing the Huffman algorithm 
 

 
 

Fig. 3. Graph (bar) of results after testing the Huffman algorithm 
 

The graphical representation of the data after 
compression in Figure 7 is done through dots. Whereas in 

Figure 3, the graphical representation is done through 
columns (the red part of the column is the reduced part of 
the bytes after compression). 

Figures 4 and 5 show the results of the LZ77 
compression algorithm. Figure 4 shows the graphic 
representation through the dots, and Figure 5 shows the 
graphical representation through the columns (the red part 
of the column represents the reduced part of the bytes after 
compression).  
 

 
Fig. 4. Graph (scatter) of results after testing the algorithm LZ77 

 

 
Fig. 5. Graph (bar) of results after testing the algorithm LZ77 

 
The results obtained after testing the Run-Length 

Encoding algorithm can be seen graphically in Figure 6 and 
Figure 7.  
 

B
y
te

s

Number lines of images data  
Fig. 6. Graph (scatter) of results after testing the algorithm Run-
Length Encoding 
 

Number lines of images data

B
y

te
s

 
Fig. 7. Graph (bar) of results after testing the algorithm Run-Length 
Encoding 

 



PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 99 NR 12/2023                                                                                    113 

Figure 6 shows the graphic representation of results 
through the dots, and Figure 7, shows the graphical 
representation of results through the columns (the red part 
of the column represents the reduced part of the bytes after 
compression). The results are presented together in a 
single graph to make it easier to compare the results 
achieved between the three algorithms. Figure 8 shows a 
summary of the results of testing the three compression 
algorithms. From Figure 8, we see that slightly better 
compression results are achieved with the application of the 
Huffman algorithm than with the application of the LZ77 
algorithm. Poor compression results are achieved by 
applying the Run-Length Encoding algorithm to this type of 
data. 
 From Figure 8, we can see that the Hoffman Algorithm 
offers a reduction of the space occupied by the original data 
by about 42.19%. The execution time for 3600 rows of 
image data is approximately 90.31 milliseconds or 0.0931 
seconds. The LZ77 compression algorithm from testing 
shows that it offers a reduction of the space occupied by the 
original data by about 37.17%. The execution time for 3600 
lines of the image data for this algorithm is about 65454.495 
milliseconds or 65.45 seconds. The Hoffman algorithm 
provides 5.02% greater data compression than the LZ77 
compression algorithm. The greater efficiency of the 
Hoffman Algorithm compared to the LZ77 compression 
algorithm is seen in terms of the time needed to perform 
compression, where the Hoffman Algorithm has an 
efficiency of 65.36 seconds better than the LZ77 
compression algorithm. 
 

Number lines of images data

B
y
te

s

 
Fig. 8. Graph (scatter) comparing the original data with the image 
data after compression with Huffman, LZ77, and Run-Length 
Encoding algorithms 

 

However, unsatisfactory results were obtained from the 
Run-Length coding algorithm testing (see Figure 8). Unlike 
the Hoffman compression Algorithm and the LZ77 
compression algorithm, the Run-Length coding algorithm for 
any data case does not provide data size compression. But 
on the contrary, it requires additional storage space for this 
data after their compression. In addition, this can lead to an 
increase in the demand for data storage capacity up to 
100% (for example, in this case, compressing a row of data, 
the need for storage space after data compression is 
double). The execution time for 3600 lines of the image 
data for the Run-Length coding algorithm is about 253.32 
milliseconds or 0.25 seconds.  
 

Conclusions 

This research presents our efforts to analyze the 
application of IoT technology along the green line for state 
security purposes, as well as the development and analysis 
of data compression algorithms generated by IoT devices. 
For a large amount of data generated by thousands of 
multimedia sensors located along the state green 
borderline, data compression is beneficial for reducing data 
storage capacity requirements, transmission link capacity, 
and energy spent by sensors. The size and volume of data 
collected by IoT devices are constantly increasing. 

Therefore, the use of suitable compression algorithms plays 
an important role. There are several compression 
algorithms, but we developed and analyzed the 
performance of the three most popular compression 
algorithms, such as Huffman, LZ77, and Run-Length 
Encoding. These three data compression algorithms were 
modified and adapted for our research purpose, whereas 
the results graphically through Python libraries and the 
interactive Jupyter Notebook platform were visualized. The 
results of these three algorithms were tested, analyzed, and 
compared among themselves. Whereas the comparison 
and analytical analysis of the algorithms, in tabular form, 
are performed according to the measurement parameters, 
as well as the results are presented graphically. From the 
obtained results, we can see that although the Huffman and 
LZ77 algorithms gave satisfactory results by compressing 
up to 42.19% of the data size, the Run-Length Encoding 
algorithm did not provide any acceptable compression. The 
Run-Length Encoding algorithm only affects the increase in 
the size of the space required for data storage. The results 
show that the Hoffman Algorithm provides 5.02% more data 
compression than the LZ77 compression algorithm and a 
data compression time efficiency of 65.36 seconds better 
than the LZ77 compression algorithm. Therefore, from this 
testing and analytical analysis of the performance of the 
algorithms, we can conclude that the choice of the algorithm 
for the compression of specific data has a vital role in 
achieving good results. 

 

Authors: The first author is Asoc. Prof. Dr Astrit Hulaj, University of 
Business and Technology, E-mail: astrit.hulaj@uni-pr.edu; Second 
author is Prof. Ass. Dr Bahri Prebreza* corresponding author, E-
mail: bahri.prebreza@uni-pr.edu; Third author is Asoc. Prof. Dr 
Xhevahir Bajrami, E-mail: xhevahir.bajrami@uni-pr.edu; the 
University of Prishtina, Street” Sunny Hill”, nn, 10000, Prishtina.  

 

REFERENCES 
[1]  Hulaj A., Bytyçi E., Kadriu V., An Efficient Tasks Scheduling 

Algorithm for Drone Operations in the Indoor 
Environment, International Journal of Online & Biomedical 
Engineering, 18(2022), No. 11, 42–57. 

 [2]  Mahmud A., Husin H.M., and Yusoff N.M., Analysis on 
Literature Review of Internet of Things Adoption Among the 
Consumer at the Individual Level, Journal of Information 
Science Theory and Practice, 10(2022), No. 2, 45-73. 

[3]  Chanchí G. E., Ospina M., Rodriguez B. L., IoT system for CO2 
level monitoring and analysis in educational environments. 
Przeglad Elektrotechniczny. 01(2023), No. 140, 140-146. 

[4] Owczarczak R., Indoor thermal energy harvesting for battery-
free IoT building applications, Przeglad Elektrotechniczny. 
3(2023), No. 132, 132-136. 

[5] Hulaj A., Shehu A., and Bajrami X., APPLICATION OF 
WIRELESS MULTIMEDIA SENSOR NETWORKS FOR 
GREEN BORDERLINE SURVEILLANCE, Annals of DAAAM & 
Proceedings, 27(2016), No. 27, 0845-0853. 

[6]  Hulaj A., Likaj R., & Bajrami X. Internet of Things Application for 
Green Border Surveillance, Based on Edge Detection 
Techniques. International Journal of Intelligent Systems and 
Applications in Engineering, 11(2023), No. 2, 702-709. 

[7] Moffat A., Huffman coding, ACM Computing Surveys 
(CSUR), 52(2019), No. 4, 1-35. 

[8]   Dhawale N., Implementation of Huffman algorithm and study 
for optimization, In 2014 International Conference on Advances 
in Communication and Computing Technologies (ICACACT 
2014), 1-6, 2014. 

[9]  Shi P., Li B., Thike H.P., Ding L., A knowledge-embedded 
lossless image compressing method for high-throughput 
corrosion experiment, International Journal of Distributed 
Sensor Networks, 14(2018), No. 1, 1550147717750374. 

[10] Correa [D.J., Pinto R.S.A., Montez C., Lossy Data 
Compression for IoT Sensors: A Review, Internet of 
Things, 19(2022),  100516. 

[11]  Liu X., An P., Chen Y., Huang X, An improved lossless image 
compression algorithm based on Huffman coding, Multimedia 
Tools and Applications,  81(2022), No. 4, 4781-4795. 

mailto:astrit.hulaj@uni-pr.edu
mailto:bahri.prebreza@uni-pr.edu
mailto:xhevahir.bajrami@uni-pr.edu

