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the speed of the BLDC motor 

  
 
Abstract. The article presents the optimal configuration of the artificial neural network to estimate the rotational speed of the BLDC motor. The 
results of computer simulations of an electromechanical system containing a voltage converter, a BLDC motor and an artificial neural network block 
are presented. The simulation model used was designed in MATLAB/Simulink. The results of computer simulations for three different configurations 
of the artificial neural network are presented. 
 
Streszczenie. Artykuł przedstawia dobór optymalnej konfiguracji sieci neuronowej do odtwarzania prędkości obrotowej silnika BLDC. Przedstawiono 
wyniki symulacji komputerowych układu elektromechanicznego zawierającego przekształtnik napięcia, silnik BLDC oraz blok sieci neuronowej. 
Model symulacyjny został zaprojektowany w programie MATLAB/Simulink. Zaprezentowano wyniki symulacji komputerowej dla trzech różnych 
konfiguracji sztucznej sieci neuronowej. (Dobór optymalnej konfiguracji sieci neuronowej przy odtwarzaniu prędkości silnika BLDC) 
 
Keywords: artificial neural networks, BLDC motor, rotational speed estimation 
Słowa kluczowe: sieci neuronowe, silnik BLDC, estymacja prędkości obrotowej   
 
 
Introduction 
 The estimation of the angular velocity of electric motors 
is most often carried out with the use of observers, which in 
the computational process use the measured currents and 
voltages, and their mathematical relationships. In the 
scientific literature, the equations that describe the motor 
speed observer take into account the measured or 
estimated motor supply voltages and the measured phase 
currents in the αβ0 coordinate system (Clarke 
transformation) or in the dq0 coordinate system (Park 
transformation) as input data [5].  When detailed data 
regarding motor parameters are not available, a simpler 
implementation is an observer that operates in the αβ0 
coordinates. It is worth emphasizing that the correct 
operation of the observer heavily depends on properly 
defined motor parameters. Modelling and simulation of 
dynamic operating states of drive systems is a common 
approach due to the possibility of studying phenomena and 
parameters that are difficult to measure in a real drive 
system [7], [8], [9], [10]. 
 In the case of a BLDC motor, the electromotive force 
induced in the unpowered motor winding is often used to 
control the voltage converter appropriately. The problem 
arises at speeds below a dozen radians per second, when 
the value of the electromotive force is low. In this situation, 
relying solely on the aforementioned property can lead to 
disturbances in the motor's operation, manifested as speed 
fluctuations and electromagnetic torque ripples. 
 Artificial neural networks (ANN) are gaining increasing 
popularity in speed estimation algorithms of sensorless 
drive systems [6]. In electromechanical systems where the 
use of conventional measurement systems is challenging or 
impossible due to harsh operating conditions, such as high 
temperature or other external factors, the speed is most 
commonly estimated. The development of microprocessor 
systems, increased computational capacity, implementation 
of hardware units performing floating-point arithmetic, etc., 
enable the use of advanced methods for estimating the 
parameters of an electric motor. 
 The aim of the study is to select ANN parameters to 
achieve a satisfactory motor response in terms of the 
angular velocity. It is assumed that the number of hidden 
layers, the number of neurons for each layer, and the type 
of ANN will change (it is planned to use a feedforward 
ANN). The process of ANN training takes place within the 

MATLAB/Simulink environment using tools designed for 
artificial neural network development. For the purposes of 
the study, a script has been prepared that, upon activation, 
automatically sets parameters for the model of the motor 
along with the voltage converter, initiates the simulation 
model, and collects measurement data. Based on the 
gathered data, the ANN training process commences 
automatically at the end of the simulation. The generated 
neural network block, containing layers along with neurons 
and calculated weights, is implemented into the model of 
the electromechanical system. 
 

 
 
Fig. 1. Simulation model of a system containing a BLDC motor and 
ANN 
 
Construction of the Simulation Model  
The simulation model was developed using the 
MATLAB/Simulink package. The simulation model was 
prepared with the following assumptions: 
 the motor block and the power supply section are based 

on blocks from the MATLAB/Simulink library, 
 input signals to the ANN block are filtered by a low-pass 

filter, 
 all simulations are conducted using the same 

parameters of the motor model and peripheral blocks, 
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 all simulations are carried out using the same reference 
velocity profile and a load torque of 3 Nm, 

 the computer-based simulation is initiated using the 
same configuration parameters. 

 The BLDC motor model in the MATLAB/Simulink has 
been formulated based on the following equations, which 
describe the electrical and mechanical aspects of the motor: 
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where: id, iq, i0 are motor currents in dq0 system; ud, uq, u0 
are motor voltages in dq0 system; Ld, Lq, L0 are motor 
inductances in dq0 system; R is phase resistance; N is 
motor pole pairs; ωm is angular velocity of motor; Me is 
motor torque, Mobc is load torque, B is coefficient of friction 
in the motor bearings. 
 For the simulation, the BLDC motor model from the 
MATLAB/Simulink library, described by the above equations, 
was used. In this study, the main focus was on integrating 
the simulation model with the ANN block. Facilitating the 
entire process of the artificial neural network learning and 
creation was the use of scripts that automatically introduce 
variables, assign values to them, and initiate the simulation 
along with the start of the learning process. 
 To the control block governing the voltage converter 
operation, signals from Hall-effect sensors are additionally 
fed (Figure 2). These signals are directed to a decoding 
block for processing the Hall-effect sensor signals. 
Subsequently, they are input to a gate driver connected to 
the power converter block, which directly controls the 
operation of the BLDC motor.     
 
Artificial Neural Network Model 
 The angular velocity is the most important parameter in 
the control process of a BLDC motor, affecting the 
efficiency, precision and energy saving of the entire system. 
In order to optimally select the artificial neural network to 
estimate the angular velocity of the BLDC motor, several 
crucial aspects were taken into account. Initially, an 
adequate amount of training data was collected, prepared 
during system simulations under normal operation. The 
collected relevant data was then archived and prepared for 
loading by the ANN learning algorithm. It's important to note 
that data must be appropriately filtered, as otherwise, the 
network might act as a low-pass filter without effectively 
estimating the output signal. 
 First-order low-pass filters were applied in this work to 
adequately prepare the signal used in the learning process. 
Since the ANN structure is intended to be used in a real 
SoC (System on Chip) setup, where simplicity is desired, a 
feedforward ANN architecture was chosen. The use of a 
cascade network was disregarded as the straightforward 
feedforward architecture yielded satisfactory results. After 
data preparation and ANN architecture selection, the model 
training process was initiated [2], [4]. 
 In this study, three artificial neural network models were 
presented, differing in the number of layers and neurons. 

The first two models with two hidden layers demonstrated 
that ANN accurately estimates the angular velocity while 
maintaining a simplified model. The third model illustrated 
that increased complexity in the artificial neural network's 
architecture did not necessarily lead to an enhancement in 
the quality of the estimated signal. 
 
Table 1. Artificial Neural Network configurations 

Configurations Network 1 Network 2 Network 3 
Hidden layers 2 2 3 
Number of neurons on 
1 layer 

10 20 50 

Number of neurons on 
2 layer 

5 5 20 

Number of neurons on 
3 layer 

0 0 5 

Activation function tansig 
Learning function trainbr 

 
 The neural controller was prepared based on the 
following assumptions: 
 a feedforward network is used, 
 the number of hidden layers and the number of neurons 

in each layer can change, 
 all simulations are conducted using the same activation 

function, 
 all simulations are carried out using the same artificial 

neural network training function, 
 training of the artificial neural network takes place using 

the same configuration parameters. 
  
Computer Simulations 
 Computer simulations were conducted using the 
MATLAB/Simulink. In the first stage, the model of the motor 
along with the voltage source inverter was activated using 
the written scripts. The simulation time was set to 30 
seconds. This stage aimed to collect a sufficient amount of 
measurement data, which is essential for the artificial neural 
network learning process. The currents and voltages in the 
dq0 coordinate system and the motor speed were archived. 
Additionally, the script was designed to archive the load 
torque, enabling the network to be prepared for dynamic 
changes in the electromechanical system's load. 
 

 
 

 
Fig. 2. Hall sensors decoder 

 The input signals to the filtering block are appropriately 
scaled, as an artificial neural network performs optimally 
when the input signals have a similar amplitudes. 
Additionally, several test signals have been extracted to 
verify the simulation model. The BLDC motor has five test 
signals extracted: stator current, rotor angular velocity, 
motor torque, stator voltage Ud, and Uq. The above-
mentioned signals are essential to diagnose the operation 
of the BLDC motor in the simulation model.    
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Fig. 3. Comparison of the rotational speed measured and estimated by the network with two hidden layers (number of neurons in the first 
layer: 10, in the second layer: 5) 

 
 
Fig. 4. Comparison of the rotational speed measured and estimated by the network with two hidden layers (number of neurons in the first 
layer: 20, in the second layer: 5). 
 

 
Fig. 5. Comparison of the rotational speed measured and estimated by the network with three hidden layers (number of neurons in the first 
layer: 50, in the second layer: 20, in the third layer: 5). 
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Fig. 6. Internal structure of three artificial neural networks used in 
the simulation model 

 
Fig. 7. Internal construction of a signal filtering block for an artificial 
neural network 

 
Conclusions 
 The simulation model of the electromechanical system 
(illustrated in Figure 1) with a BLDC motor has been 
successfully formulated and executed. The construction of 
the model involved using simulation blocks from the 
MATLAB/Simulink package. The simulation model comprises 
the motor model, the power electronic converter model, and 
peripheral systems for archiving measurement data and 
controlling the operation of the electromechanical system. 
The modelled motor was energized by a three-phase 
voltage source inverter. The model of the electromechanical 
system has been equipped with a control system using 
signals from Hall-effect sensors. The model was used in the 
data archiving process, and the collected data was used in 
the learning process of the artificial neural network. The 
neural network training took place in MATLAB/Simulink. 
The "useParallel" command was used during ANN training 
to leverage parallel numerical computation, significantly 
reducing the network training time.  
 The artificial neural network was prepared in three 
different configurations, differing in the number of hidden 
layers and the number of neurons in each layer. The 
primary objective was to maintain a simple internal network 

structure, as it is intended for implementation in a real Zynq 
series SoC setup. Consequently, a cascade network was 
not employed due to its considerably higher complexity 
compared to the straightforward feedforward network. The 
simple feedforward artificial neural network accurately 
estimates the angular velocity, and it is worth noting that 
increasing the number of layers and neurons did not 
enhance the quality of the estimated angular velocity of the 
BLDC motor. 
 The conducted simulation studies demonstrate that the 
artificial neural network remarkably estimates the BLDC 
motor's rotational speed. Figures 3 to 5 show the reference 
speed, measured speed, estimated speed, and the 
difference between the measured speed and estimated 
speed for the three different artificial neural network 
configurations. The simulations were conducted according 
to the assumptions adopted for the formulation of the 
simulation model.   
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