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Detection of epileptic seizures with the use of convolutional 
neural networks 

 
 

Abstract. The purpose of the article is to investigate whether the implementation of a CNN consisting of several layers will allow the effective 
detection of epileptic seizures. For the research, a publicly available database registered for 4 dogs and 8 people was used. The 1-second iEEG 
recordings were marked by a neurophysiologist as interictal, early seizure, and seizure. A CNN was trained for each patient individually. Coefficients 
such as precision, AUC, sensitivity, and specificity were calculated, and the results were compared with the best algorithms published in one of the 
contests on the Kaggle platform. The average accuracy for the recognition of seizures using CNN is 0.921, the sensitivity is 0.850, and the 
specificity is 0.927.  For early seizures these values are 0.825, 0.782, and 0.828, respectively. 
 
Streszczenie. Celem artykułu było zbadanie czy zastosowanie sieci CNN, składającej się z kilku warstw umożliwi skuteczną detekcję napadów 
epileptycznych. Na użytek badań zastosowano ogólnodostępną bazę danych zarejestrowaną dla 4 psów oraz 8 ludzi. Jednosekundowe zapisy 
sygnału iEEG zostały oznaczone przez neurofizjologa jako: międzynapadowe, wczesnonapadowe oraz napadowe. Zaproponowano strukturę sieci 
CNN, a następnie wytrenowano ją dla każdego pacjenta indywidualnie. Zostały wyliczone współczynniki takie jak: trafność, AUC, czułość, 
specyficzność. Następnie wyniki zostały porównane do osiągniętych w najlepszych algorytmach opublikowanych w konkursie na platformie Kaggle. 
Średnia skuteczność rozpoznawania napadów z wykorzystaniem sieci CNN wynosi 0.921, czułość 0.850, a specyficzność 0.927. Dla okresów 
wczesnonapadowych wartości te wynoszą odpowiednio 0.825, 0.782 i 0.828. (Wykrywanie napadów padaczkowych z wykorzystaniem 
konwolucyjnych sieci neuronowych) 
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Introduction 
One of the significant problems of today's neurology is 

the diagnosis and treatment of epilepsy [1], [2]. It is 
estimated that 1-2% of people worldwide suffer from 
epilepsy [3]. In recent years, we can observe an increased 
interest in the use of EEG/iEEG signals to recognize and 
detect the onset of a seizure. Using automatic seizure 
detection methods would enable easier diagnosis and 
monitoring of a patient's condition [4]. We are currently 
observing the rapid development of devices for a non-
invasive and invasive recording of brain activity [5]. 
Developing an effective algorithm for the detection and/or 
prediction of seizures is one of the important challenges [6]. 

Standard and dedicated EEG/iEEG signal analysis 
combined with machine learning are commonly used to 
recognize seizures [7], [8]. The most popular methods are 
correlation analysis, spectral analysis, and wavelet analysis 
[9], [10]. Techniques such as LDA, SVM, MLP, and newer 
ones such as LSTM networks, CNN, and autoencoders 
[11]–[13] are used for classification. To validate algorithms, 
unique databases were created dedicated to recognizing 
the onset of seizures [14]. The authors of many studies 
report the achievement of high accuracy and recognition 
rates and increased algorithms sensitivity. 

The purpose of the article is to demonstrate the 
usefulness of CNN in detecting early seizure and seizure. 
The iEEG database registered for one of the contests on 
the Kaggle platform was used for network training and 
evaluation of the results [15]. The results were then 
discussed and compared with other detection algorithms. 
Also, the aspects of practical application of the proposed 
solution were considered. 
 

Materials  
For effective training of seizure detection algorithms, 

particularly with the implementation of deep networks, it is 
necessary to have representative data with sufficient 
examples. This study used the database made available to 
develop algorithms for detecting epileptic seizures based on 
electrocorticographic signal (iEEG) [16]. The authors of the 
database shared it in the hope that the algorithms 

developed will be implemented in devices that stimulate the 
brain in the area of epileptic seizures. The database 
contains the signal collected during the examination of 
people and dogs. The developed algorithms should give the 
lowest possible level of false alarms. The challenge was 
published on the platform kaggle.com [17]. Data should be 
classified into interictal, early seizure, and seizure. 

Data were recorded for 4 dogs and 8 people suffering 
from epilepsy. iEEG signals were recorded with a sampling 
frequency of 500 Hz to 5 kHz. A low-pass and anti-aliasing 
filter was used during signal acquisition. Incorrect 
recordings were deleted. The data was described and 
categorized by two neurophysiologists. The marked 
segments covered the entire seizure from the earliest stage 
until the end of the seizure. The data was divided into a 
training set and a test set. Only epileptic seizures preceded 
by a seizure-free period of at least 4 hours were 
considered. The interictal periods were chosen to occur at 
least one hour before or after the seizure. When dividing the 
data, the inequality of the occurrence of epileptic seizures 
was preserved in relation to the periods between seizures. 
The training data was sorted chronologically, while the test 
data was devoid of chronology. In each segment, the 
probability of a seizure or early seizure (the first 15 seconds 
of the seizure) was determined. During the training and 
testing of the network, the original data division was 
maintained as in the "UPenn and Mayo Clinic's Seizure 
Detection Challenge". Detailed information on the database 
can be found in the article [18]. 
 

CNN for seizure detection 
In the classical convolutional network, the first layers act 

as feature extractors and consist of filters used repeatedly 
during a single epoch. Successive convolutional layers 
generate more complex features that cover larger areas of 
the processed data [19]. A single convolution layer often 
consists of convolution, activation (for example ReLU), and 
pooling operations. The pooling operation calculates a local 
value group's maximum or mean. Behind the last 
convolutional layer, a network is used, which acts as a 
classifier. A fully connected (FC) network, such as a 
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multilayer perceptron (MLP), can be used for classification. 
In the case of multidimensional and multichannel data, the 
convolution can be performed along any dimension or 
several dimensions, for each channel separately or for all 
channels simultaneously. The convolution result can also 
be a multichannel, single channel, or a combination of con-
volution for selected channels to give a multichannel result. 

In our experiment, a 2D convolutional network was 
used. The network consisted of three convolutional layers 
with filters of the same sizes 16x16. The number of filters 
for subsequent layers of the network was 8, 16, and 32. A 
fully connected layer with 256 neurons was used at the end 
of the network. Figure 1 shows a block diagram of the 
applied network. During network training, the hyper-
parameters listed in Table 1 were tested. Hyperparameters 
such as the number of epochs, the learning coefficient, the 
optimizer, and the scheduler were selected. The influence 
of the hyperparameters on the convolutional and fully 
connected layers was tested. All hyperparameters were 
chosen manually. The hyperparameters for which the best 
results were obtained were retained. Default methods of 
initializing the weights of individual layers were used. Due 
to the different number of signal channels recorded for each 
patient and the different locations of epilepsy foci, the 
networks were individually trained for each patient. 
 

Table 1. Range of tested hyperparameters 
Parameter name Range / possible values 

Number of epochs 10 - 1000  
Learning rate 1e-7 – 1e-2  
Optimizer Adam, SGD  
Scheduler None, ReduceLROnPlateau, 

CyclicLR 
Number of convolutional layers 1 – 4  
Number of filters in a layer 4 – 2048  
Filter size 3x3 – 32x32 
Filter step (1,1), (2,2) 
Double layer filtration yes, no  
Normalization within the training set yes, no  
Dimension reduction yes, no  
Size of reduction kernel 
(MaxPooling) 

2x2 

Reduction step (MaxPooling) 2x2 
Number of fully connected network 
layers 

1, 2  

Number of neurons in a fully 
connected network 

32 – 2048  
  

Dropout in various places on the 
network  

0 – 0,8  

 

Python programming language was used to implement 
the solution. Python is characterized by dynamic typing and 
automatic memory management. A deep network 
implementation library, PyTorch, was used to test various 
network architectures. The Pytorch library enables the use 
of GPUs with CUDA technology to accelerate calculations 
on tensors. The Pytorch Lightning library was used to 
organize the code. The Tensorboard tool was implemented 
to diagnose the network, allowing real-time visualization of 
the training process. The weights of the trained models are 
saved for each patient, allowing the models to be used 
later. 

 

Results and discussion 
The Area Under the Curve (AUC) measures how well a 

model can distinguish between positive and negative 
classes. The AUC is calculated as the area under the ROC 
curve. ROC curves have the desired property in the case of 
unbalanced data sets - they are insensitive to changes in 
the distribution of classes [20].  

 
Figure 1. Block diagram of the applied CNN 

 
Table 2. Applied CNN hyperparameters 

Parameter name Value 
Number of epochs 100 
Learning rate 1e-4  
Optimizer Adam  
Scheduler None  
Number of convolutional layers 3  
Number of filters in a layer 8, 16, 32 
Filter size 16x16, 16x16, 16x16 
Filter step (1,1), (1,1), (1,1) 
Double layer filtration no, no, no 
Normalization within the training set no, no, no 
Padding with zeros (0,0), (0,0), (0,0) 
Dropout after convolution 0, 0, 0, 0.1  
Reduction yes, yes, yes  
Reduction size (2,2), (2,2), (2,2) 
Filter step (2,2), (2,2), (2,2) 
Number of fully connected network 
layers 

1  

Number of neurons in a fully 
connected network 

256  

Dropout after fully connected layers 0, 0 
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Figure 2. ROC curve (the ROC curve for the random classifier is 
marked with a dashed line) 
 

If the ratio of positive to negative cases in the test set 
changes, the ROC curve remains the same. However, the 
AUC is only one measure used to evaluate seizure 
detection systems and does not give a complete picture of 
the system's performance. Figure 2 shows an example of 
the ROC curve calculated for patient 1 for the task of 
distinguishing between seizure and non-seizure signals. 
The area under the curve (AUC) for seizure detection is 
0.918, which is a relatively good result. Accuracy in the 
context of binary classification is the proportion of correct 
predictions (both true positive and true negative) to the total 
number of cases examined [21]. Accuracy can be 
misleading when used with unbalanced datasets in which 
the size of individual classes differs [22]. Sensitivity, on the 
other hand, measures how well the model can predict 
positive classes [23]. Sensitivity expresses the percentage 
of positive cases classified as positive by the model. The 
higher the sensitivity, the better the model at predicting 
positive classes. Sensitivity itself does not form the basis for 
an informed judgment of the results, as the results may 
contain many false positives that are not considered [24]. 
Specificity is a measure of how well the model can predict 
negative classes. Specificity can be interpreted as the 
probability of identifying negative cases overall negative 
cases. The higher the specificity, the better the model in 
predicting negative classes. As with the sensitivity, it should 
be noted that the specificity calculation does not consider 
false negative cases. The F1 score is the harmonic mean of 
the classifier's precision and sensitivity. The F1 works well 
for unbalanced data sets [25]. At the same time, note that 
this measure is sensitive to a change in the set's class size 
ratio. Therefore, the F1 scores for sets with different ratios 
of the number of positive and negative classes should not 
be compared directly [21], [26]. 

We have performed an in-depth analysis to verify our 
CNN solution and its applicability in clinical practice. For 
this purpose, measures were calculated, such as AUC, 
recognition accuracy, F1 score, sensitivity, and specificity.  
A summary of the results for the CNN solution was 
presented in Table 3. The seizure suffix means that the 
results were calculated for no-seizure as the negative class 
and early seizure or seizure as the positive class. The early 
suffix means that results were calculated for seizure or no 
seizure as the negative class and early seizure as the 
positive class. AUC total is calculated as mean of AUC 
seizure and AUC early. The results presented in Table 3 
show that the measures obtained are satisfactory. However, 
for Patient 3 and Patient 4 the results are worse. Therefore, 
it seems that the developed CNN algorithm is not suitable 
for every user, or the recorded iEEG signals for Patient 3 
and Patient 4 do not give similar iEEG signal patterns for 
seizure, early seizure, and no seizure periods. It is also 

worth noting that the mean accuracy values obtained for 
dogs are better than for humans. An important indicator that 
describes the solution is sensitivity and precision. In Table 
4, we can observe satisfactory sensitivity and specificity 
values, but worse results were also obtained for Patient 3 
and Patient 4.  
 

Table 3. AUC, accuracy and F1-score obtained for the test set 

  
AUC 

seizure
AUC
early 

AUC 
total 

ACC 
seizure 

ACC 
early 

F1 
seizure

F1 
early 

Dog_1 0.987 0.966 0.976 0.987 0.949 0.879 0.424
Dog_2 0.947 0.752 0.849 0.935 0.598 0.563 0.040
Dog_3 0.983 0.920 0.951 0.950 0.888 0.772 0.362
Dog_4 0.993 0.974 0.983 0.976 0.965 0.770 0.537
Patient_1 0.967 0.898 0.932 0.956 0.865 0.758 0.320
Patient_2 0.993 0.965 0.979 0.984 0.943 0.874 0.356
Patient_3 0.755 0.576 0.666 0.746 0.678 0.340 0.072
Patient_4 0.559 0.559 0.559 0.702 0.702 0.221 0.221
Patient_5 0.923 0.855 0.889 0.924 0.918 0.548 0.260
Patient_6 0.973 0.912 0.942 0.932 0.886 0.666 0.241
Patient_7 1.000 0.916 0.958 0.999 0.909 0.994 0.219
Patient_8 0.934 0.624 0.779 0.963 0.600 0.802 0.049
 Mean 0.918 0.826 0.872 0.921 0.825 0.682 0.258

 

Table 4. Sensitivity and specificity obtained for the test set 

  
Sensitivity

seizure 
Sensitivity 

early 
Specificity 

seizure 
Specificity

early 
Dog_1 0.956 0.938 0.988 0.949
Dog_2 0.829 0.781 0.940 0.596
Dog_3 0.940 0.888 0.951 0.888
Dog_4 0.976 0.953 0.976 0.965
Patient_1 0.865 0.813 0.964 0.868
Patient_2 0.969 0.953 0.984 0.943
Patient_3 0.656 0.500 0.755 0.683
Patient_4 0.460 0.460 0.726 0.726
Patient_5 0.821 0.672 0.930 0.923
Patient_6 0.918 0.844 0.933 0.887
Patient_7 0.992 0.958 1.000 0.908
Patient_8 0.811 0.625 0.978 0.600
Mean 0.850 0.782 0.927 0.828

 
From Tables 4 and 5 it can be concluded that in each 

case the results for early seizures are clearly worse than for 
seizures in general. Worse results for early seizures 
indicate difficulties in classifying these types of cases. For 
Patient 4 only, there is no difference in the results. This is 
due to the fact that there were only early seizures in both 
the training set and the test set for that patient. 

A slightly more detailed look at the results can be 
obtained by analyzing the confusion matrices for the test 
set. Table 5 presents the confusion matrix for Patient 1 and 
Table 6 for Patient 3.  
 
Table 5. Confusion matrix for the test set for Patient1 

 
Predicted 

interictal seizure 

T
ru

e
 interictal 1819 68 

seizure 22 141 

 
Table 6. Confusion matrix for the test set for Patient3 

 
Predicted 

interictal seizure 

T
ru

e
 interictal 871 282 

seizure 44 84 

 

The best confusion matrix is the one for which the 
diagonal values have the highest values. In the case of 
Patient 1, we can observe 22 cases classified as interictal 
and evaluated by experts as a seizure. Additionally, 68 
cases were assessed as seizures, but experts evaluated 
them as interictal. For Patient 3, we can observe 44 cases 
classified as interictal but assessed by experts as seizure. 
Moreover, as many as 282 cases were classified by the 
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system as seizures and were considered by experts as 
interictal. 

We compared our results with the best algorithms 
published in one of the contests on the Kaggle platform 
concerning the detection of epileptic seizures. Many 
researches participated in this competition. The methods 
used by the winners are described below. The first 
algorithm is based on classification using three sets of 
features. The first set of features were FFT magnitudes in 
the low-frequency range of 1 to 47 Hz. The spectrum was 
normalized in each frequency range. The second set of 
features were correlation coefficients (between EEG 
channels) and their eigenvalues in the frequency domain. 
The third set of features were correlation coefficients 
(between EEG channels) and their eigenvalues in the 
frequency domain. The classifier, a random forest 
consisting of 3,000 trees, was trained on such a set of 
features. In the second algorithm, the data was 
preprocessed in an automated filter selection step. The filter 
combinations were selected from a bank of 10 partially 
overlapping bandpass filters covering the entire frequency 
range from 5 Hz to 200 Hz. Three combinations were 
chosen that performed the best in the cross-validation test. 
After filtering, the covariance matrices of the EEG data were 
calculated and normalized for each 1-second fragment of 
the signal. The classification was carried out using a set of 
100 multilayer perceptrons, each consisting of two hidden 
layers with 200 and 100 neurons in each layer. In the third 
algorithm, the signal was initially re-sampled to 100 Hz. The 
algorithm used features calculated for each channel 
separately and global features. Channel-specific features 
included maximum amplitude, mean amplitude, absolute 
deviation, and variance, as well as features derived from a 
fast Fourier transform of the signal, such as maximum 
power, mean power, variance, and frequencies at which 
maximum power occurred. Global features included time 
domain features such as maximum amplitude, mean 
amplitude, maximum absolute deviation, maximum value, 
mean value, and covariance between channel signals. 
Global features were also obtained using a fast Fourier 
transform of the signal - maximum power, average power, 
maximum variance between channels, and maximum, 
average, and variance of frequency at which the maximum 
power occurred. The first and second derivatives for the 
features mentioned above were also calculated. The 
classification was made by averaging the results of 1000 
decision trees using the Extremely Randomized Trees 
method implemented in Python with the 
ExtraTreesClassifier from the scikit-learn library. 

In the contests on the Kaggle platform, only AUC (Area 
Under the Curve) was used as an algorithm quality 
assessment method. The comparison of the three winning 
algorithms and our CNN algorithm is presented in Table 7. 
The Final score is the arithmetic mean of the AUC total for 
all dogs and patients. It should be noted that the application 
of expert knowledge on signal processing and analysis 
resulted in better AUC results than the use of CNN. The 
size of filters in individual layers of the CNN does not allow 
for the identification of interdependencies between all 
registered channels. 
 
Table 7. Comparison of the three winning algorithms and the 
proposed CNN solution 

  Final score 
Algorithm 1 0.975 
Algorithm 2 0.968 
Algorithm 3 0.962 
CNN 0.872 

 

When analyzing the obtained results, we must not forget 
that the classification took place after only one second of 
the recorded iEEG signal. One second may not be sufficient 
in some applications to effectively classify and recognize 
the phase of a seizure. Including longer fragments of 
signals in the target algorithm in the authors' assessment 
would allow for much better results. 

The solutions developed require training the classifier 
for a specific patient. In practice, this means recording 
many hours of the iEEG signal and manually marking 
selected fragments as interictal, early seizure, and seizure 
by a neurophysiologist. Obstacles to creating a fully 
automatic and universal detection system for each patient 
are different epilepsy focus for each patient and different 
morphologies of the iEEG signal. 
 
Conclusion 

The use of CNN enables an effective detection of 
epileptic seizures. The results obtained indicate that CNN 
independently searches for iEEG signal features that are 
useful for classification. The average seizure recognition 
accuracy using CNN is 0.921, the sensitivity is 0.850, and 
the specificity is 0.927. The network must be trained 
individually for each patient. It is related to the acquisition of 
iEEG signals, the location of the seizure foci, and the 
morphology of seizures. It should also be noted that the 
results are not satisfactory for all patients. In order to 
reliably assess the usefulness of the proposed solution, it is 
necessary to conduct research for a larger number of 
people in the future. 
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