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The use of convolutional neural networks in radio tomographic 
imaging 

 
 

Abstract. This work aims to solve the problem of tracking people's movement in closed spaces. The applied solution does not require the monitored 
persons to have any devices with them. The method presented is to use radio tomographic imaging based on the fact that the human body is mostly 
water. This paper aims to show how heterogeneous and convolutional neural networks can be used to improve a radio tomographic imaging system 
that can accurately locate people indoors. In addition to the original algorithmic solutions, the advantages of the system include the use of properly 
designed and integrated devices - radio probes - whose task is to emit Wi-Fi waves and measure the strength of the received signal. Thanks to the 
two-step approach, the sensitivity, resolution and accuracy of imaging have increased. In addition, our solution performs well in radio tomography 
and other types of tomography because it is easy to understand and can be used in many ways. 
 
Streszczenie. Niniejsza praca ma na celu rozwiązanie problemu śledzenia ruchu osób w pomieszczaniach zamkniętych. Zastosowane rozwiązanie 
nie wymaga, aby monitorowane osoby posiadały przy sobie jakiekolwiek urządzenia. Przedstawiony sposób polega na wykorzystaniu 
tomograficznego obrazowania radiowego w oparciu o fakt, że ciało ludzkie składa się w większości z wody. Niniejsze opracowanie ma na celu 
pokazanie, w jaki sposób niejednorodne, splotowe sieci neuronowe można wykorzystać do ulepszenia systemu obrazowania radiotomograficznego, 
który może precyzyjnie znajdować ludzi w pomieszczeniach. Oprócz oryginalnych rozwiązań algorytmicznych do zalet systemu należy zastosowanie 
odpowiednio zaprojektowanych i zintegrowanych urządzeń – sond radiowych – których zadaniem jest emitowanie fal Wi-Fi oraz pomiar siły 
odbieranego sygnału. Dzięki zastosowaniu podejścia dwuetapowego wzrosła czułość, rozdzielczość i dokładność obrazowania. Ponadto nasze 
rozwiązanie dobrze sprawdza się w tomografii radiowej i innych rodzajach tomografii, ponieważ jest łatwe do zrozumienia i może być używane na 
wiele sposobów. (Wykorzystanie konwolucyjnych sieci neuronowych w obrazowaniu radiotomograficznym). 
 
Keywords: radio tomographic imaging, device-free localization, artificial neural networks, wireless localization 
Słowa kluczowe: tomografia radiowa; lokalizacja bez urządzeń; sztuczne sieci neuronowe, lokalizacja bezprzewodowa 
 
 

Introduction 
Along with the development of megatrends related to 

the integration of high technologies with the changing 
standards of the functioning of businesses and societies, 
there is a growing need to develop mechanisms for 
monitoring people in closed spaces. In the case of shopping 
centres, airports, stations, museums, market halls, etc., the 
main goal is to ensure the safety and comfort of customers 
and to optimize the movement of people. On the other 
hand, in the case of buildings with restricted access, such 
as prisons, military facilities, hospitals, office buildings, 
production halls, industrial installations, etc., the aim is to 
monitor people in order to restrict access to specific rooms 
and eliminate threats, e.g., terrorist threats. 

The development of intelligent building technologies 
depends on the advancement of many cyber-physical 
systems, each of which fulfils specific tasks [1]. Intelligent 
building technologies rely on many cyber-physical systems, 
each of which does a different aim. Radio tomographic 
imaging (RTI) makes it possible to localize and track people 
without them having to carry any extra electronic devices 
[2–5]. Effective implementation of such a solution enables 
constant monitoring of the location of people in buildings for 
various purposes, such as production halls, shopping 
centers, sports stadiums, closed facilities (e.g., prisons), 
amusement parks, hospitals, museums, etc. An important 
advantage of the RTI system is the relatively low cost of 
implementation and maintenance [6]. Such information can 
be used to automate human-responsive intelligent building 
subsystems such as lighting, air conditioning, heating, door 
locking control, shutter control, etc., as well as for security 
purposes. Device-free locating people inside buildings is a 
challenge due to the difficulties associated with the need to 
solve the tomographic inverse problem. This problem is 
also ill-posed, which results from the deficit of the 
explanatory variables in relation to the dependent variables 
[7-13]. Due to the above difficulties, currently known 

methods still require improvement in the quality of 
algorithms for converting RT measurements to images.  

The popularity of free machine learning libraries has 
spurred interest in improving machine learning algorithms in 
RTI systems. In [1], the authors attempt to mathematically 
design estimators to reduce the uncertainty resulting from 
the quantization error of received signal strength (RSS) that 
makes up the output data. In [4], the authors present the 
RTI reconstruction through the Landweber iteration process 
with one-step multiplication. To solve the ill-posedness 
problem, they use Tikhonov regularization. Another 
example of research on the wireless location of people 
using a network of sensors is the study [14]. In this case, 
researchers prove that shadow fading can be represented 
as a linear combination of the proportion of radio frequency 
(RF) links. This transformation, called back projection, 
indicates that the selection of RF information links 
contributes to the reduction of measurement noise. The 
image reconstruction is created using a technique that is 
based on Bayesian Compressive Sensing and back 
projection. Other ways to improve the quality of RTI imaging 
include using hybrid grids to make images, interference 
cancelling techniques, heterogeneous Bayesian 
compressive sensing [15], generative model-based 
attenuation image recovery [16], and others. 

The main objective of this paper is to present a concept 
of the algorithmic method that significantly contributes to the 
improvement of RTI images. RTI development typically 
focuses on single issues related to mathematical modelling, 
inverse problem algorithms, or hardware solutions. Our 
method improves the performance of two tasks 
simultaneously (image creation and postprocessing), and its 
additional advantage is its versatility, which makes it 
applicable not only to RTI but also to other types of 
tomography, such as electrical or ultrasound tomography. 
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Materials and Methods 
An important element of the research is the correct 

design of the matrix on which the tomographic image will be 
created. A mathematical model of the Fresnel zone was 
used for this purpose. The Fresnel zone is an ellipse-
shaped space that is correlated with the transmission 
energy of the radio signal between a transmitter and a 
receiver. The longitudinal section of the Fresnel zone is 
elliptical in shape, as can be seen in Figure 1, which 
presents the RF network consisting of 16 sensors with an 
illustration of the weight model. Each of the 16 sensors 
(nodes) can transmit and receive a WiFi signal by 
connecting to any other node. In this way, we obtain a 
network of 120 two-way connections.  

 

 
 
Fig. 1. RF sensor network with elliptical weight model 
 

We can put a pixel mesh on the analyzed surface. 
Measurable radio signals between the transmitter and 
receiver propagate inside a rotating ellipse called the first 
Freshnel zone. Thus, an object (e.g., a human) that is 
located in the area of the ellipse weakens the received radio 
signal. On this basis, the weights of pixels that are inside 
the ellipse 𝑤 can be determined according to formula (1) 

(1) 𝑤 ൌ
1

ඥ𝑑

൜1    𝑖𝑓    𝑑
ଵ െ 𝑑

ଶ ൏ 𝑑  𝛿
0   𝑒𝑙𝑠𝑒                       

 

 where 𝑑 represents the distance between the pair of 
WiFi sensors, 𝑑

ଵ  and 𝑑
ଶ  are the distances from the center 

of the pixel i to the sensor locations j, 𝛿 is the adjustable 
parameter that determines the width of the ellipse. External 
pixels are assigned zero weights (𝑤 ൌ 0). Formula (1) can 
be presented in the generalized matrix form 𝐲 ൌ 𝐰𝐱  𝐧, 
where 𝐲, 𝐱, 𝐚𝐧𝐝 𝐧 are the shadowing, pixels, and noise 
vectors respectively, 𝐰 is the matrix of weights. Figure 2 
shows a room with probes placed on the walls. 

 

 
 

Fig. 2. (a) – the room with WiFi probes installed on the walls, (b) – 
a close-up of the probes with USB power supply 

 
The WiFi radio transducer consists of a microcontroller 

with an ARM architecture, a radio wave transmitter 

compatible with Bluetooth 5, and a transmitter using the 
IEEE 802.15.4 transmission standard. The above elements 
were enclosed in a module the size of a matchbox. The 
transmitters use the 2.4 GHz band and the same 
modulation (GFSK) but with the division into other channels 
characteristic of their protocols. The efficiency of data 
exchange is favored by the use of two independent antenna 
paths, one of which was made as a ceramic antenna 
integrated with the PCB, and the other as an external 
antenna for the u.FL connector. Figure 3 shows the WiFi 
transducer integrated circuit. 

 

 
Fig. 3. WiFi transducer integrated circuit 
 

Figure 4 presents the room with WiFi probes installed on the 
walls with USB power supply. 

 

 
 
Fig. 4. The WiFi transducers mounted on the walls. 
 

In Figure 5a, we can see the outline of the room marked 
with the places of installation of sixteen WiFi probes. In turn, 
Figure 5b shows the pattern of a case reflecting three 
tracked objects located in the observed room.  
 

       
 (a) (b) 
 

Fig. 5. Monitored room: (a) - a room with transducers, (b) – pattern 
image with tracked objects. 

 
Figure 6 shows reconstruction images with a resolution 

of 56×56 pixels. As you can see, the quality of both 
reconstructions, both raw and filtered, is very poor. 

As an alternative method, we propose the use of two 
convolutional neural networks (CNN), the first of which 
CNN1 is designed to reconstruct images based on 
measurements. Since the CNN1 network solves the inverse 
problem, the resulting reconstructions are not perfect. To 
improve the quality of the reconstruction, we train the 
second CNN2 network. Using a trained CNN1 network, we 
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generate reconstructions that will be used as inputs during 
the training of the second CNN2 neural network. The two-
stage workflow of this concept is presented in formula (2) 

 

      
 (c) (d) 

 
Fig. 6. Mathematically simulated reconstructions:  
(a) – reconstruction with elliptical weight model, (b) – filtered 
reconstruction 
 

(2) ቊ
𝐗 → CCNଵ → 𝐘

𝐘 → CCNଶ → 𝐘ෙ
 

where 𝐗 is the 16×16 matrix of measurements, 𝐘 is the 
56×56 matrix of reconstructions made by CCNଵ, and 𝐘ෙ is the 
56×56 image enhanced by CCNଶ. The Matlab package was 
used in the research. CNN1 consisted of 10 layers, including 
two convolutional, ReLu, batch normalization, and dropout. 
To counteract overfitting, the early stopping method and a 
dropout layer with a coefficient of 0.3 were used. CNN2 
consisted of 9 layers and similarly contained two 
convolutional layers and one fully connected layer. 

Figure 7a shows the conversion of the measurement 
matrix into a reconstruction image. The above conversion is 
accomplished by means of a convolutional neural network 
that transforms the set of measurements generated by the 
transducers. Clearly, the raw restoration produced by CNN 
is far from perfect. First of all, the proportions of the size of 
the inclusions are not properly maintained. In the reference 
picture, the center inclusion is smaller than the one near the 
south wall of the room. 
  

Measurements 𝐗 → Reconstruction 𝐘 Pattern 𝐘

 
(a) 

 
(b) 

 
Fig. 7. Producing reconstruction in step 1: (a) – transition from 
measurements to reconstruction image, (b) – pattern image 

 
Relatively poor quality of reconstructions made on the 

basis of a single neural network and raw measurement data 
is understandable because uncorrelated measurement data 
(120 two-way connections) constitute less than half of all 
values of the input set (16 × 16 = 256). Meanwhile, the 
resolution of the reconstruction image is 56 × 56 = 3136 
pixels. As it can see, there is a very serious deficit of input 
data here, which intensifies the scale of the problem of 
inverse indeterminacy with which the neural network must 
struggle. For this reason, a second CNN was used to 
improve the quality of the primary reconstruction (see 
Figure 8). 

The second CNN was trained to use primary 
reconstructions as inputs and pattern images as outputs. It 

is clearly visible that after passing the second CNN, the 
reconstruction image improved, and the proportions of the 
inclusions became correct. 

 
Reconstruction 𝐘 Reconstruction 𝐘ෙ 

 
 

Fig. 8. Improving reconstruction in step 2: (a) – raw reconstruction 
𝐘, (b) – enhanced reconstruction 𝐘ෙ 

 
Results 

Fig. 4 shows a comparison of the reconstructions 
reconstructed by CNN1 and improved by CNN2. It can be 
clearly seen that the reconstructions obtained after using 
CNN2 are more accurate and make it possible to locate 
even small objects located close to each other. This means 
being able to distinguish between adults and children, or 
even animals. 

 
#  Pattern CNN1 CNN2 

(1) 

(2) 

 

(3) 

 
 
Fig. 9. Comparison of reconstructions reconstructed by CNN1 (1st 
stage) and improved by CNN2 (2dn stage) 
 

Subjective observations indicate a clear dominance of 
the reconstructions corrected in the second step, but it is 
impossible to state this fact indisputably on this basis. The 
use of quantitative indicators enables an objective 
evaluation of the reconstructed images in comparison to 
their standard variants. As many as five independent 
indicators were used in the research, thanks to which the 
effectiveness of the described solution was verified. The 
first and at the same time basic indicator is the mean 
square error (MSE) [17] calculated according to formula (3) 

 

(3) MSE ൌ
∑ ሺ𝑦 െ 𝑦ොሻଶே

ୀଵ

𝑁
 

 where 𝒚 is a set of pixels included in the pattern 
image, 𝒚ෝ is a set of pixels included in the reconstruction 
after the first step. Let’s agree that 𝒚 is the analogous set of 
pixels included in the reconstruction after the second stage. 
𝑁 is the resolution of the image. In this case 𝑁 ൌ 3136. 
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Another metric is the relative image error (RIE) satisfied 
by (4). 

(4) RIE ൌ
‖𝑦ො െ 𝑦‖

‖𝑦‖
 

The next indicator is the image correlation coefficient 
(ICC) expressed by formula (5). 

(5) 
ICC ൌ

∑ ሺ𝑦 െ 𝑦തሻே
ୀଵ ൫𝑦ො െ 𝑦ොത൯

ඨ∑ ሺ𝑦 െ 𝑦തሻଶே
ୀଵ  ൫𝑦ො െ 𝑦ොത൯

ଶே

ୀଵ

 

The sixth criterion for assessing image quality is the 
mean absolute error (MAE) given by equation (6). 

(6) MAE ൌ
∑ |ሺ𝑦 െ 𝑦ොሻ|ே

ୀଵ

𝑁
 

The last indicator is the standard error (SE). The 
standard error is an estimate of the standard deviation of 
the difference between the measured (estimated) value and 
the true value. It can be calculated according to (7)  

(7) SE ൌ
𝝈

√𝑁
 

where 𝝈 is a standard deviation of absolute error Δ𝑦, 
where Δ𝑦 ൌ 𝑦 െ 𝑦ො. The true value of the standard error is 
usually unknown, and the standard deviation of the sample 
mean distribution is taken as the standard error. Table 1 
presents the results of the analysis based on the five 
above-described criteria for assessing the quality of the 
reconstructed images. All indicators, except ICC, reflect 
errors, so the closer their values are to zero, the more the 
reconstructed image resembles the pattern. ICC is a 
correlation coefficient, so its maximum value is 1 and its 
minimum value is zero. The ideal correction of the 
reconstruction with the pattern would obtain ICC = 1.  

 
Table 1. The parameters of the sensor 

Step MSE RIE ICC MAE SE 
CNN1 0.0012 36.0167 0.7600 1.2441 3.3144 
CNN2 0.0008 26.6910 0.8621 0.9433 2.2864 

 
The analysis of the indicators included in Table 1 clearly 

shows the absolute dominance of the method based on the 
two-stage process of tomographic imaging. 

 
5  Conclusions 
The research conducted experiments aimed at 

developing neural models and verifying the effectiveness of 
convolutional neural networks in radio tomography aimed at 
tracking people in closed spaces. An important feature of 
the research was testing devices based on inexpensive and 
popular wireless technologies (WiFi) in relation to people 
not equipped with any communication devices. This solution 
is much more flexible and brings real benefits in practical 
applications. 

Convolutional neural networks can solve the inverse 
problem in RTI. To improve the quality of images, we 
propose to enter an additional CNN2. We then use CNN1 to 
generate the training cases for CNN2. The results of the 
research showed a significant improvement in imaging 
efficiency and an increase in the sensitivity and accuracy of 
mapping reference objects. This is especially important in 
the case of tracking people next to each other and in the 
case of children. The method is universal and can be used 
not only in radio tomography but also in other types of 
tomography, e.g., in electrical, ultrasound, or optical 
tomography. 

Authors: Grzegorz Kłosowski, Ph.D. Eng., Lublin University of 
Technology, Nadbystrzycka 38A, Lublin, Poland, E-mail: 
g.klosowski@pollub.pl; Przemysław Adamkiewicz, Ph.D., University 
of Economics and Innovation, Projektowa 4, Lublin, Poland, E-mail: 
przemysław.adamkiewicz@wsei.lublin.pl; Jan Sikora, Prof., 
University of Economics and Innovation, Projektowa 4, Lublin, 
Poland, E-mail: jan.sikora@wsei.lublin.pl 
 

REFERENCES 
[1] Styła, M., Adamkiewicz, P., Hybrid navigation system for indoor 

use. Informatyka, Automatyka, Pomiary W Gospodarce I 
Ochronie Środowiska, 12 (2022), No. 1, 10-14. 

[2] Liu, H.; Darabi, H.; Banerjee, P.; Liu, J. Survey of Wireless 
Indoor Positioning Techniques and Systems. IEEE 
Transactions on Systems, Man and Cybernetics Part C: 
Applications and Reviews, 37 (2007), 1067–1080. 

[3] Mishra, A.; Sahoo, U.K.; Maiti, S. Distributed Incremental 
Strategy for Radio Tomographic Imaging. In Proceedings of the 
2020 IEEE 17th India Council International Conference, 
INDICON 2020; (2020). 

[4] Wang, Z.; Zhang, H.; Liu, H.; Zhan, S. Fast Image 
Reconstruction Algorithm for Radio Tomographic Imaging. 
Lecture Notes in Electrical Engineering, 236 (2013), 323–331, 
doi:10.1007/978-1-4614-7010-6_37/FIGURES/6. 

[5] Kania K., Rymarczyk T., Mazurek M., Skrzypek-Ahmed S., 
Guzik M., Oleszczuk P., Optimisation of Technological 
Processes by Solving Inverse Problem through Block-Wise-
Transform-Reduction Method Using Open Architecture Sensor 
Platform, Energies, 14 (2021), No. 24, 8295. 

[6] Cao, X.; Yao, H.; Ge, Y.; Ke, W. A Lightweight Robust Indoor 
Radio Tomographic Imaging Method in Wireless Sensor 
Networks. Progress In Electromagnetics Research M, 60 
(2017), doi:10.2528/PIERM17052701. 

[7] Kłosowski G., Rymarczyk T., Kania K., Świć A., Cieplak T., 
Maintenance of industrial reactors supported by deep learning 
driven ultrasound tomography, Eksploatacja i Niezawodnosc – 
Maintenance and Reliability; 22 (2020), No 1, 138–147. 

[8] Koulountzios P., Aghajanian S., Rymarczyk T., Koiranen T., 
Soleimani M., An Ultrasound Tomography Method for 
Monitoring CO2 Capture Process Involving Stirring and CaCO3 
Precipitation, Sensors, 21 (2021), No. 21, 6995. 

[9] Rymarczyk T., Kłosowski G., Hoła A., Hoła J., Sikora J., 
Tchórzewski P., Skowron Ł., Historical Buildings Dampness 
Analysis Using Electrical Tomography and Machine Learning 
Algorithms, Energies, 14 (2021), No. 5, 1307.  

[10] Rymarczyk T., Niderla K. Kozłowski E. Król K., Wyrwisz J. 
Skrzypek-Ahmed S., Gołąbek P., Logistic Regression with 
Wave Preprocessing to Solve Inverse Problem in Industrial 
Tomography for Technological Process Control, Energies, 
14(2021), No. 23, 8116.  

[11] Korzeniewska, E., Sekulska-Nalewajko, J., Gocawski, J., 
Drożdż, T., Kiebasa, P., Analysis of changes in fruit tissue after 
the pulsed electric field treatment using optical coherence 
tomography, EPJ Applied Physics, 91 (2020), No. 3, 30902. 

[12] Korzeniewska, E., Krawczyk, A., Mróz, J., Wyszyńska, E., 
Zawiślak, R., Applications of smart textiles in post-stroke 
rehabilitation, Sensors (Switzerland), 20 (2020), No. 8, 2370. 

[13] Kania, W., Wajman, R., Ckript: a new scripting language for 
web applications, Informatyka, Automatyka, Pomiary W 
Gospodarce I Ochronie Środowiska, 12(2022), No. 2, 4-9. 

[14] Tan, J.; Guo, X.; Wang, G. Link Selection in Radio 
Tomographic Imaging with Backprojection Transformation. 
Lecture Notes in Electrical Engineering (2019), 529, 487–496. 

[15] Huang, K.; Tan, S.; Luo, Y.; Guo, X.; Wang, G. Enhanced 
Radio Tomographic Imaging with Heterogeneous Bayesian 
Compressive Sensing. Pervasive Mob Comput (2017), 40, 
450–463. 

[16] Cao, Z.; Wang, Z.; Fei, H.; Guo, X.; Wang, G. Generative 
Model Based Attenuation Image Recovery for Device-Free 
Localization with Radio Tomographic Imaging. Pervasive Mob 
Comput (2020), 66, 101205. 

[17] Szczesny, A.; Korzeniewska, E. Selection of the Method for the 
Earthing Resistance Measurement. Przegląd Elektrotechniczny 
(2018), 94, 178–181. 

 
 


