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Effective persons identification using two- and three-
dimensional finger knuckles 

 
 

Abstract. Because of their high level of precision, biometric systems continue to attract the attention of several researchers. Different biometric traits 
have been investigated for use in security systems, such as fingerprints, faces, irises, palmprints, and knuckle prints. In most cases, bi-dimensional 
information is utilized. To achieve this aim, we have examined the performance of biometric identification systems based on a 3D-FKP database 
through five pre-trained networks such as AlexNet, VGG19, GoogleNet, ResNet50, and DenseNet201. The obtained experimental results illustrate 
the effectiveness of the suggested approach, with a high recognition rate and accuracy.  
 
Streszczenie. Ze względu na wysoki poziom precyzji systemy biometryczne nadal przyciągają uwagę wielu badaczy. Zbadano różne cechy 
biometryczne pod kątem wykorzystania w systemach bezpieczeństwa, takie jak odciski palców, twarze, tęczówki, odciski dłoni i odciski kostek. W 
większości przypadków wykorzystuje się informacje dwuwymiarowe. Aby osiągnąć ten cel, zbadaliśmy wydajność systemów identyfikacji 
biometrycznej opartych na bazie danych 3D-FKP za pośrednictwem pięciu wstępnie wyszkolonych sieci, takich jak AlexNet, VGG19, GoogleNet, 
ResNet50 i DenseNet201. Uzyskane wyniki eksperymentalne ilustrują skuteczność zaproponowanego podejścia, przy wysokim współczynniku 
rozpoznawania i dokładności. (Skuteczna identyfikacja osób za pomocą dwu- i trójwymiarowych kostek palców) 
 
Keywords: Biometrics, 2D/3D-FKP, Multimodal Identification, Deep learning, transfer learning, Fusion at level score. 
Słowa kluczowe: biometria, identyfikacja osób, głębokie uczwenie. 
 
 
Introduction 

The demand to automatically authenticate and identify 
individuals for numerous purposes, such as information 
secrecy, building access, and computer security, has 
dramatically increased in recent years. Biometrics is one of 
the most crucial and trustworthy techniques in this field. It 
involves identifying individuals based on their physiological 
traits, such as fingerprints [1, 2], iris [3, 4], retina [5], 
palmprints [6, 7], hand geometry [8], and face [9], or 
behavioral characteristics, such as voice [10], signature 
[11], and gesture [12].  

Among many traits of biometric identification, Finger 
Knuckle Print (FKP) images [13, 14, 15] have gained 
popularity as biometric traits due to their accuracy, 
efficiency, and ease of acquisition. Recent trends have paid 
attention to 3D biometric information in addition to 2D 
intensity images because 3D images are more robust, 
invariant to illumination, and contain rich information. This 
trend has been studied in a number of biometric research 
projects, including 3D fingerprints [16, 17], 3D palmprints 
[18, 19, 20, 21], the 3D face [22, 23], the 3D ear [24, 25], 
and, most recently, 3D finger knuckle prints [26, 27, 28, 29, 
30]. Because the 3D FKP is so new as a biometric identifier 
represented by a single database created by the Hong 
Kong Polytechnic University [31], it will be possible to offer 
numerous enhancements to the identification process.  

Little work has been done using the 3D FKP database. 
Cheng and Kumar [26] were the first to use the contactless 
3D FKP database in 2019 [31]. This database was collected 
from 130 different subjects in two sessions. In their paper, 
3D depth data is converted into 2D images using the 
Frankot-Chellappa [32] or Poisson Solver [33] approaches. 
For feature extraction, they used the method of surface 
gradient derivatives. Additionally, Cheng and Kumar wrote 
three other papers. In the first paper [27], the authors have 
developed a highly effective matching approach that uses 
surface key points extracted from the 3D finger knuckle 
images using the reliable surface gradient derivative 
features. In this case, they used the extended database of 
228 subjects, while 190 subjects contained two-session 
images. A comparative study with a publicly accessible 3D 
knuckle database reveals that their method is 23 times 

faster and more accurate. Although their work focuses on 
3D knuckle recognition, the method’s performance on other 
publicly accessible databases with similar 3D biometric 
patterns (including 3D palmprints and 3D fingerprints) has 
verified the model’s performance. In the second paper [28], 
the authors provided an additional study for 3D FKP 
recognition utilizing a novel deep neural network-based 
approach. This method simultaneously encodes and 
combines deep characteristics from several scales to create 
a more robust representation of deep features. Such 
collaborative feature representations are robustly matched 
to compensate for involuntary finger fluctuations during 
contactless imaging, utilizing an efficient alignment 
technique with a fully convolutional architecture. In the last 
paper [29], they could determine if a local shape was 
convex or concave along a given direction and encode the 
curvature information as binary templates of optimal sizes 
for future comparisons. Their solution may be applied to 
templates of various sizes and is superior to state-of-the-art 
technologies, as shown in the 3D knuckle database. In 
addition, they showed the generalizability of their method by 
testing it on 3D palmprint and finger vein datasets. Another 
work proposed by Chaa et al. [30]. This research proposes 
unimodal and multimodal (on score level fusion) contactless 
person identification systems based on 2D and 3D finger 
knuckle patterns. First, the Tan and Triggs normalization 
technique (TT) is applied to the depth of the 3D FKP image 
to obtain a TT 3D FKP image. Then, an innovative and 
effective technique, Monogenic Local Phase Quantization 
(MLPQ), is used to extract features from TT 2D and 3D FKP 
images. Experimental results utilizing the publicly available 
PolyU FKP dataset demonstrate that the given framework 
achieved significantly lower error rates and surpassed the 
state-of-the-art techniques. 

The primary objective of any biometric identification 
system is to obtain a high identification rate with a low error 
rate. Recently, however, Convolutional Neural Networks 
(CNN) have demonstrated excellent performance in image 
classification [34]. Several specific biometric recognition 
challenges have been investigated as uses of this 
approach, such as fingerprint recognition [35], iris 
recognition [36] and face recognition [37], have been 
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studied as applications for this technology. The application 
of CNN to the 3D FKP identification system is highly 
motivated. This work aims to suggest unimodal and 
multimodal biometric identification systems based on 3D 
FKP images using convolutional neural networks with a 
transfer learning method through several celebrated pre-
trained models of networks. 
This paper’s structure is as follows: Section 2 describes the 
proposed multimodal biometric system in which scores are 
fused at the matching level. The experimental setup and the 
findings from the evaluation of the proposed model’s 
effectiveness are discussed in section 3. Section 4 
concludes   
the paper and addresses significant recommendations for 
future study. 
 
 

2. Proposed multimodal biometric identification system 
As stated previously, we intend to create efficient 

biometric identification systems by applying deep transfer 
learning to 2D-FKP and 3D-FKP. As is the case with all 
biometric systems, the proposed systems consist of two 
phases: enrollment and identification. During the enrollment 
step, the pre-trained network performs feature extraction 
and classification to train the selected dataset. During the 
identification step, the identical technique is performed on 
the test dataset. Comparing the two datasets allows us to 
accept or reject an individual. The architecture of a 
multimodal biometric identification system is based on 
fusing the normalized scores of two or more unimodal 
systems at the matching score level. A diagram of the 
proposed multimodal biometric system based on 2D and 3D 
FKP and deep transfer learning is presented in Fig. 1. 
 

 
 

Fig.1. The proposed multimodal biometric system’s architecture. 

 
2.1. Pre-processing 
To find the knuckle pattern region, a fixed-size rectangular 
window is put on the horizontal and vertical axes of the 
edge-detected image. Like in [38], the window’s edge pixels 
 are computed. The maximum number of edge pixels in the 
sliding window is used to segment a fixed region of interest 
from the image. The 3D segmented image will then be used 
as input for the 3D reconstruction 

 
2.2. 3D reconstruction 
The 3D depth information or the normal surface vectors has 
been acquired using a photometric stereo approach for the 
3D imaging. The biometric imaging device consists of a 
camera, seven evenly distributed illuminations, a control 
circuit and a computer. In order to convert them to 
information of images, we used the Poisson solver [33]. 
 
2.3. Transfer learning 
In order to create an efficient identification biometric system 
using 3D-KP images, we will propose to use famous 
networks based on transfer learning with fine-tuning and 
data augmentation [39, 40]. It entails taking features 
learned from one problem and applying them to a new, 
similar problem. Transfer learning is typically employed 
when the dataset contains insufficient information to train a 
full-scale model from scratch. In the context of deep 
learning, transfer learning is most often seen as the 
following workflow: 
 Use previously trained model layers. 
 Freeze them to prevent any information they contain 

from being destroyed during future training rounds. 
 Add new trainable layers on top of the frozen layers. On 

a new dataset, the old features in predictions will be 
changed. 

 Train the new layers on the dataset. 

 Fine-tuning is the last step. It involves unfreezing the 
built model (or just a part of it) and retraining it on the new 
data with a very low learning rate. Slowly adjusting the 
already-trained features to the new data could lead to 
significant improvements. For example, in the AlexNet 
network used in our work, the last three layers are replaced 
by an FC layer, a softmax layer, and an output layer, as 
seen in Fig. 2. 

 
Fig. 2: Transfer learning using AlexNet network. 
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2.4. Matching and fusion scores 
The match score measures feature vector similarity 

between the test (input) and training (model). When all 
match scores are compared, the template with the highest 
similarity score is shown to be the one with the highest 
match score. In score-level fusion, the match scores 
generated by various biometric systems are combined to 
determine a person’s identity. Fusion at this level is the 
most frequently described strategy in the biometric literature 
because match scores are so simple to obtain and process. 
However, such a method only makes sense when the 
matchers’ scores are comparable. Before using fusion 
procedures, the scores must be normalized to produce a 
common range of values in multimodal systems. Among 
several standardization methods, we have chosen to use 
the min-max method, which is simple and effective. The 
following equation expresses it [39]: 
 

(1)                     𝑆መ ൌ
ௌି୫୧୬ ሺௌሻ

୫ୟ୶ሺௌሻି୫୧୬ ሺௌሻ
                                        

 

 While the vector 𝑆መ contains the normalized scores of 
the modality𝑖 the vector 𝑆 includes all the scores 
determined between the test and all the stored feature 
vectors. At this level, a variety of fusion rules can be 
applied. We will use the sum fusion rule because it is a 
simple and effective way to calculate fusion scores. It is 
expressed as follows [39]: 
 

(2)                       𝑆 ൌ ∑ 𝑆መ
ே
ୀଵ                                                     

 

Where 𝑆denotes the matching score of the 𝑘௧ user’s 𝑖௧ 
biometric trait. 
 

3. Experimental Results and Discussion 
To evaluate the performance of the proposed 3D finger 

knuckle recognition framework, we present experimental 
results utilizing a recent publicly accessible 3D finger 
knuckle database. Furthermore, a comparative analysis 
with other studies validates the efficacy of our approach. 
 

3.1. Contactless 3D Finger Knuckle Database  
The Hong Kong Polytechnic University 3D FKP 

Database [28] was used to evaluate the performance of the 
proposed CNN-based identification systems. The HKPolyU 
3D FKP database is a two-phase database containing 2D 
FKP and 3D FKP images [26]. It was acquired using a 
photometric stereo approach for 3D imaging. The biometric 
imaging device consists of a camera, seven evenly 
distributed lights, a control circuit, and a computer. The 
database was obtained from 228 different persons. Among 
the 228 persons, 190 have 2 sessions. The rest have a 
single session. six forefinger 2D knuckle images and six 
middle finger 2D knuckle images for each person in each 
session. However, there are 7 stereo photometric images 
for each 3D image. Therefore, forty-two photometric stereo 
3D forefinger images and forty-two photometric stereo 3D 
middle finger images are available for each person in each 
session. The 3D depth information is converted by Poisson 
Solver [35] to a 2D image, which is a well-known technique 
for reconstructing the depth map while resolving the 
integrability issue. The Poisson Solver method produces a 
good visual outcome that approximates the natural knuckle 
patterns. Fig. 3 illustrates some sample images from this 
database. 
 Two databases are required to develop a 3D-FKP 
recognition application: one for training and the other for 
testing. However, there is no rule to determine this split 
quantitatively. It often results from a compromise, 
considering the amount of data available and the time to 
perform the learning. In the series of test, we carried out, 
we took the odd six images for training and even six for 

testing for both sessions of 190 subjects. This evaluation 
protocol gives 215460 (190 × 189 × 6) imposter comparison 
scores and 1140 (190 × 6) genuine comparison scores. 
 

 
                     (a)                                             (b) 

 
(c)                                             (d) 

 
(e)                                             (f) 

Fig. 3: Sample images from the database, first line: forefinger, 
second line: Middle finger, (a)/(b) 2D first session, (c)/(d) 2D 
second session, (e)/(f) 3D with Poisson 
solver. 
 

3.2. Evaluation metrics 
Evaluation of biometric identification systems can be 

done either by open-set or closed set identification modes. 
The first one does not guarantee the person’s existence to 
be identified in the database, whereas in the second mode, 
it is presumed that the person exists. The following criteria 
can measure the performance of a biometric identification 
system for open-set identification [40]: 
 The False Rejection Rate, or FRR, represents the 

percentage of persons who should be accepted, but the 
system rejects them. The following equation illustrates it. 

 

(3)     𝐹𝑅𝑅ሺ%ሻ ൌ
ே௨  ௧ௗ ௨ ሺிோሻ

்௧ ௨  ௨ ௦௦
  

 

 The False Acceptance Rate, or FAR, represents the 
percentage of persons who should not be accepted, but 
the system accepted them. The following equation 
illustrates it. 

 

(4)   𝐹𝐴𝑅ሺ%ሻ ൌ
ே௨  ௧ௗ ௦௧ ሺிሻ

்௧ ௨  ௦௧ ௦௦
 

 

 The Equal Error Rate, or EER, represents the 
percentage where the false acceptance and rejection 
rates are equal (FAR = FRR). It constitutes an optimal 
compromise between false rejections and false 
acceptances. 

Consequently, we may plot the Receiver Operating 
Characteristics (ROC) curve, representing the FRR versus 
the FAR. 
 To assess a biometric identification system’s accuracy 
performance in closed-set identification, we employ the 
Cumulative Matching Characteristic (CMC) curve. It 
displays the ranking of individual templates depending on 
the percentage of matches. Two criteria are linked with this 
curve. The rank of Perfect Rate (RPR), which is defined as 
the rank at which the identification rate attempts 100%, and 
Rank-One Recognition (ROR), which is defined as the 
percentage of persons recognized by the system as a 
function of a variable ”rank.” The following equation 
determines it: 
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(5)                      𝑅𝑂𝑅ሺ%ሻ ൌ
ே

ே
ൈ 100                                     

 

Where 𝑁 represents the number of images successfully 
assigned to the correct identity, and N represents the total 
number of images attempting to assign an identity. 
 
3.3. Adjusting Network Parameters 
To construct effective biometric identification systems, we 
must carefully select the ideal parameters depending on the 
goal of the recognition performance. Therefore, before 
presenting our results, we must adapt and tune the 
parameters of the pre-trained networks to the dataset we 
used. First, the image size for inputs to the pre-trained 
networks is 227 × 227 for the AlexNet network and 224 × 
224 for the VGG19, GoogleNet, and ResNet50 networks. 
So, our images need to be resized from 249 × 212 to these 
sizes when they enter the network. Also, our images are 
grayscale, so we need to convert them to color images. 
Finally, to increase the new database size and the trained 
network’s adaptability and limit the overfitting problem, we 
rotate the images from minus ten to ten degrees, using a 
one-degree step for data augmentation. 
 Freezing some layers during transfer learning’s fine-
tuning can reduce computation time, albeit at the expense 
of accuracy when the new dataset is considerably different 
from the training dataset. In our case, more layers of 
adjustment may be required. In this study, we kept all of the 
pre-trained network layers. When developing a model with 
transfer learning, it is best to first test optimizers to acquire 
minimal bias and good results in the training set and then 
seek regularizers if overfitting is observed in the test set. 
Transfer learning requires a low learning rate for the 
selection of hyperparameters in order to take advantage of 
the pre-trained model weights. This choice of the optimizer 
(SGD, Adam, or RMSprop) will affect the number of epochs 
required to train a model successfully. So, after several 
experiments, we tested our identification systems with the 
SGD optimization method and tuned the learning rate to 
0.001, the number of epochs to 50, and the batch size to 
128. 
 

3.4. Experimental results 
We divided our experimental study into three parts. The first 
part will be devoted to the unimodal identification results. 
On the other hand, the second part will be for the 
multimodal identification results. Finally, in the last part, we 
will compare our work with the state-of-the-art. The different 
experiments of our biometric identification systems were 
executed on an experimental platform (HP Z8G4) with 64-
bit Microsoft Windows 10, an Intel Xeon Silver 4108 
processor, 96GB of RAM, and a GP U (GeF orceRT 
X2080Ti, GeF orceRT X3090). 
 

3.4.1. Unimodal biometric identification system 
performance  
After selecting the hyperparameters of each pre-trained 
network (AlexNet, VGG19, GoogleNet, ResNet50, and 
DenseNet201), the systems’ performances are based on 
the four modalities (2D/3D forefinger, 2D/3D middle finger) 
were evaluated. Table 1 shows the test results in the two 
identification modes: open-set and closed-set. Figures Fig. 
4 and Fig. 5 show the ROC curves and the CMC curves of 
the results found previously. Thus, in the case of open-set 
identification mode, the table shows that 3D images offer 
better results in terms of the EER than 2D. This is because 
3D images have low variability (Fig.4) compared to 2D 
images, which allows good identification even at low 
resolution. The VGG19, ResNet50, and DenseNet201 
networks can achieve a perfect result (0.0000% of EER) for 

3D images. For 2D images, the ResNet50 and the 
DenseNet201 networks give excellent results.  
 

Table 1: Performance of the unimodal biometric 
identification system based on five pre-trained networks. 

Network Modality Dim Accuracy 
EER (%) ROR (%) RPR 

 

AlexNet 

 

Forefinger 2D 0.6838 94.6491 118

3D 0.0083542 99.4737 2 

Middle finger 2D 0.5057 95.3509 42 

3D 0.0027847 99.2105 2 

 

VGG19 

Forefinger 2D 0.5363 96.0526 67 

3D 0.0000 100 1 

Middle finger 2D 0.4385 96.6667 27 
3D 0.0000 100 1

 

GoogleNet 

Forefinger 2D 0.5670 95.9649 30 

3D 0.0055694 98.9474 3 

Middle finger 2D 0.5730 95.5263 34 

3D 0.0027847 99.4737 2 

 

ResNet50 

Forefinger 2D 0.4398 96.9298 53 

3D 0.0000 100 1 

Middle finger 2D 0.4002 96.3158 17 

3D 0.0000 100 1 

 

DenseNet
201 

Forefinger 2D 0.2631 97.0175 36 

3D 0.0000 100 1 

Middle finger 2D 0.4385 96.8421 102 

3D 0.0000 100 1 
 

Indeed, these two networks are ranked among the best 
feature extraction networks. Similarly, the results obtained 
for the closed set identification mode also illustrate that 3D 
images improve identification performance compared to 2D 
images. This gives a very good impression of the 
importance of including this component in the identification 
operation to improve its accuracy. In this case, it can make 
the biometric system more resilient to spoofing attacks. 
 

3.4.2. Multimodal biometric identification system 
performance  

To improve the performance of our biometric 
identification systems, we combine two modalities (2D and 
3D) of a finger for a single user at a score level using sum 
rule fusion. The fusion will be between Forefinger/Middle 
Finger 2D and Forefinger/Middle Finger 3D for the AlexNet 
and GoogleNet networks. The outcomes of these fusions 
are listed in Table2.  

The effectiveness of the multimodal identification system 
is assessed through a comparison with the 2D and 3D 
components of the unimodal system. For the 2D 
component, the decrease in the values of the EER and the 
increase in the ROR values of the multimodal system are 
remarkable for the two fingers (Forefinger and Middle 
finger) and the two networks (AlexNet and GoogleNet). For 
example, for the AlexNet network, the diminution of the 
EER is equal to 0.6802% and 0.5029% for the two fingers, 
the Forefinger and Middle finger, respectively. The ROR 
increase is 5.2332% and 4.5614% for both fingers. On the 
other hand, for the GoogleNet network, the EER decrease 
is 0.5670% and 0.5730% for Forefinger and Middle finger, 
respectively. Thus, for the ROR increase, we obtained 
4.0351% and 4.4737%.  
 For the 3D component, the difference with the 
multimodal system is illustrated in Figures Fig. 6 and Fig.7. 
These figures sketch the histograms representing the EER 
and the ROR for the Forefinger and the Middle finger, 
respectively. Based on Table 2 and the Figures Fig.6 and 
Fig.7, the difference between the multimodal identification 
system and the 3D part of the unimodal identification 
system is not very big. A perfect result with an EER of 
0.0000%, a ROR of 100%, and an RPR of 1 was obtained 
by the Google Net network. 
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Fig. 4. ROC curves of unimodal biometric identification systems, (a) 
2D images, (b) 3D images. 
 

 

 
 
Fig. 5. CMC curves of unimodal biometric identification systems, (a) 
2D images, (b) 3D images. 

 

 
Fig. 6. Comparison between unimodal and multimodal EER, (a) 
Forefinger, (b) Middle finger. 

 

 
 
Fig. 7. Comparison between unimodal and multimodal ROR, (a) 
Forefinger, (b) Middle finger. 
 
Table 2: Performance of the multimodal biometric identification 
system. 

Modality Fusion Accuracy 
EER (%) ROR (%) RPR

Forefinger AlexNet 2D/AlexNet 3D 0.0035987 99.9123 2

Middle finger AlexNet 2D/AlexNet 3D 0.0027847 99.9123 2 

Forefinger GoogleNet 2D/GoogleNet 3D 0.0000 100 1 

Middle finger GoogleNet 2D/GoogleNet 3D 0.0000 100 1 

The fusion of modalities has improved the results. This 
proves that multimodal identification brings an improvement 
to the recognition systems. To further improve the 
performance of our multimodal identification system with the 
AlexNet network, we propose to fuse the score of the 
DenseNet201 2D network with the AlexNet 3D network 
since it gave the best results for 2D images. The results are 
shown in Table 3. In this case, the results have improved, 
and a perfect result has been reached. 
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Table 3: Performance of the proposed multimodal biometric 
identification system. 

Modality Fusion Accuracy 
EER (%) ROR (%) RPR

Forefinger DenseNet201 2D/AlexNet 3D 0.0000 100 1 

Middle finger DenseNet201 2D/AlexNet 3D 0.0000 100 1 

 
Table 4: Comparison with the state-of-the-art. 

Identification 
System 

Fingers Work 
Nbr of  

persons 
ROR 
(%) 

EER 
(%) 

 
 
 
 

Uni- 
modal 

 
2D-Forefnger 

Cheng et al., 
[26] 

105 89.5 10.2

Chaa et al., [30] 105 96.03 1.77
Ours 190 97.01 0.26

2D-Middle finger Chaa et al., [30] 105 96.98 0.82
Chaa et al., [30] 190 96.84 0.43

 

3D-Forefnger 

Cheng et al., 
[26] 

105 88.8 9.6 

Cheng et al., 
[28] 

190 96.00 2.4 

Chaa et al., [30] 105 97.30 1.1 
Ours 190 100 0.00

3D-Middle finger Chaa et al., [30] 105 98.48 1.11
Ours 190 100 0.00

 
 

Multi- 
modal 

Forefinger 
(2D and3D) 

Cheng et al., 
[26] 

105 90.35 8.7 

Chaa et al., [30] 105 97.46 0.79
Ours 190 100 0.00

Middle finger 
(2D and3D) 

Chaa et al., [30] 105 98.57 0.32
Ours 190 100 0.00

All finger 
(2D and3D) 

Chaa et al., [30] 105 99.52 0.16

 
3.4.3. Comparative study  
To carry out a more in-depth evaluation to show the 
effectiveness of the systems proposed in this work, we have 
conducted a comparison with the state-of-the-art methods, 
in particular [26, 28, 30]; the results are shown in Table 4.  
These comparisons are made in the unimodal and 
multimodal systems and with both modes, i.e., in the open-
set identification mode with the EER and the closed set 
identification mode with ROR performances. From Table 4, 
we can conclude that our biometric identification systems 
outperform the state-of-the-art methods with a higher ROR 
and lower error. 
 
4. Conclusion 
This paper developed contactless 3D finger-knuckle 
identification systems based on deep transfer learning. Two 
types of biometric systems have been proposed: unimodal 
and multimodal. Our experimental results using a publicly 
available contactless 3D finger knuckle database 
demonstrate the effectiveness of our proposed approach for 
both types. Also, the proposed identification scheme 
outperformed other schemes recently proposed. We aim to 
use visual transforms in the future to improve this work, 
either for person recognition or other applications such as 
spoof attacks. 
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