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Deep learning correction for image reconstruction in electrical 
impedance tomography using UNet model 

 
 

Abstract. This article was inspired by a similar Deep DBar algorithm, where a modified UNet convolutional model was used to correct the output of 
the DBar algorithm using the UNet model. However, instead of the DBar algorithm, another deterministic electrical impedance tomography 
reconstruction algorithm was used in this solution. The modified UNet model was used to successfully correct the initial reconstructions, which were 
computed using Kotre regularities using pseudo-inversion of the sensitivity matrix. 
 
Streszczenie. Ten artykuł został inspirowany podobnym algorytmem Deep DBar, w którym zmodyfikowany model splotowy UNet został użyty do 
skorygowania danych wyjściowych algorytmu DBar przy użyciu modelu UNet. Jednak zamiast algorytmu DBar w tym rozwiązaniu zastosowano inny 
deterministyczny algorytm rekonstrukcji elektrycznej tomografii impedancyjnej. Zmodyfikowany model UNet został wykorzystany do skutecznej 
korekcji wstępnych rekonstrukcji, które zostały obliczone przy użyciu regularności Kotrego z wykorzystaniem pseudo-inwersji macierzy czułości 
(Poprawa rekonstrukcji tomografii impedancyjnej oparta o głębokie uczenie przy użyciu modelu UNet).  
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Introduction 

Electrical Impedance Tomography (EIT) reconstruction 
is a difficult (undetermined) problem to resolve. It relies on 
the reconstruction of the image on the scene based on a 
vector obtained from numerous measurements using EIT 
sensors. There are a lot of EIT reconstruction algorithms 
available in the bibliography. On the other hand, the most 
excellent results are obtained using neural networks 
(profound learning solutions). 

Various numerical methods are available for such tasks 
[1-25]. The research [1] used logistic regression using an 
elastic net to reconstruct EIT. The research [2] uses 
Artificial Neural Networks to reconstruct the image. This 
article describes using separate neural networks for each 
output pixel to reconstruct individual pixels. It produces 
better results than a single NN with multiple outputs, but the 
amount of neural networks and parameters in each network 
is huge. The article [17] showed the example application of 
convolutional neural network in EIT reconstruction. 

Nowadays, the multiple ANN EIT reconstruction 
methods are based on deep and convolutional 
autoencoders. Paper [16] describes a solution based on EIT 
reconstruction gained using a deterministic algorithm (D-
Bar) and applies UNet convolutional model to correct these 
initial reconstructions. The images are the input and output 
of the UNet model, so we can use them to correct other 
reconstruction algorithms' results. 

Another method using deep autoencoders described in 
[20] reconstructs lungs object based on Electrical 
Impedance Tomography. The method includes three steps: 
1) A deep convolutional autoencoder is trained on 
reference (output) images (the lungs image reconstruction 
problem is presented in the paper). 
2) The images encoded by the encoder part from the 
convolutional autoencoder trained in the previous step are 
applied as outputs to train of network with fully connected 
layers to predict such vectors based on electric potential 
vectors obtained from EIT sensors. 
3) In the last stage, the joint model of both pre-trained 
networks is prepared. Finally, the output from the pre-
trained model in stage 2 is inserted into the encoder part 
from the autoencoder obtained in the initial stage. This 
resultant hybrid network can reconstruct EIT images based 

on electrical potentials from Electrical Impedance 
Tomography measurements. 

The research presented in this article was inspired by 
the algorithm called Deep DBar [16], which relies on the 
improvement of deterministic DBar algorithm output [24] 
using deep learning using the UNet model [26] with 
modifications. After examination of the DBar algorithm, it 
turned out that it has a relatively very low speed, so another 
faster deterministic algorithm for some practical applications 
should be developed. After examination of various models, 
there are also available different DNN models useful for EIT 
reconstruction using autoencoders [22], [23]. This model 
contains two separately trained parts (SAE and LR). The 
coder part from pre-trained earlier SAE autoencoder 
encodes potential vector and logistic regression layers (LR) 
reconstructing EIT images. The training process of the SAE 
autoencoder includes a few repeatable stages. All stages 
are used to train the SAE model to encode EIT potential 
vectors; thus, the potential vectors are on the input and 
output in this model. Initially, the SAE autoencoder contains 
only three layers (input layer, hidden layer and output 
layer). The hidden layer contains the encoded vector from 
the first step (which will be used in the next step). After a 
few iterations of that process, a deep autoencoder with 
more hidden layers to encode potential vectors is formed. In 
the end, the final hybrid model is constructed, which 
contains the encoder part from the SAE autoencoder and 
LE layers. 
 
Training data generation 
The datasets used in this experiment for training are 
synthetic. The algorithm for data generation produced 150 
thousand scenes with different inclusions such: as circle, 
square or two them - where each subset contains 50 
thousand of one type of samples with noise. 
The conductivity of the circle is less, and the conductivity of 
the square is greater than the background conductivity to 
obtain similar conditions as in the laboratory where the 
actual data comes from. Each scene image from the 
dataset was used in EIT simulation to generate potential 
vectors with lengths equal to 192. 
The synthetic data generation for EIT reconstruction was 
also a difficult (inverse to inverse) problem because the 
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generated data must be close to real EIT data achieved in 
the laboratory. 
In order to gain vectors of potentials based on generated 
scenes with different kinds of inclusions, the simulation 
using the finite element method using square shapes was 
performed. 
The simulation algorithm parameters for dataset generation 
used in the experiments were adapted to get synthetic data 
close to real data obtained in the laboratory. 
Next, the potential differential vectors are computed using 
received potential vectors: 
 
(1) 𝑋 ൌ  𝑥 െ 𝑥0  

 
where:x – is the potential vector gained based on the scene 
containing inclusions, x0 – is the potential vector gained for 
the empty scene (with background only), 
X – is the potential differential vector, i – indicates the 
position of elements in potential and differential potential 
vectors. 
 

Obtained samples of reference images (from now on 
referred to as Y) as well as potential differential vectors 
(after this referred to as X) were divided into a training 
dataset (inclusive 120 thousand samples) and test dataset 
(inclusive 30 thousand samples). 
 
Preliminary EIT reconstructions using a deterministic 
algorithm 
 The preliminary EIT reconstructions using the 
deterministic algorithm presented below generated 80x80 
images based on potential differential vectors from each 
sample in the training and test datasets. The preliminary 
reconstructions (based on inputs in the form of potential 
differential vectors) were done using Kotre's regularisation 
[25] by sensitivity matrix pseudo-inversion: 
 

(2) 𝐽ିଵ ൌ ሺ𝐽்𝐽  𝜆𝑅ሻିଵ𝐽், 𝑅 ൌ ൫𝐼 ∙ ሺ𝐽்𝐽ሻ൯
ଵ
ଶ 

 

 

where: J – is the matrix of sensitivity, λ – is the 
regularisation coefficient established using the gradient 
method, (∙) – is the operator of the multiplication element by 
element. 
 

Reconstructed conductivity is determined by: 
 

(3) 𝜎 ൌ 𝐽ିଵ𝑉  
 

where V – is a final post-processed measurement (in the 
form of a differential vector). 
 
Preprocessing of data 
 The data in the experiments was normalised as follows. 
First, the potential differential vectors are used to compute 
preliminary EIT reconstructions using the deterministic 
algorithm described earlier. Then, the reference images 
were normalised to range <0,1>. After that, the background 
pixels have values of 0.5, while inclusions with conductivity 
lesser than the background (circles) have values of 0.0 and 
objects with conductivity greater than the background 
(squares) have values of 1.0. 
The second stage of reference image processing is the 
removement of the outer background (caused by the EIT 
simulation program – surrounding electrodes designate the 
proper EIT area). Since convolutional neural networks 
consider the entire area of the image, the input and output 
images should have a consistent background. 
 The preliminary EIT reconstruction images (obtained 
through a deterministic algorithm) are normalised using the 
min-max method for each sample (image) separately. This 

normalisation method was chosen based on our 
experiments with training EIT reconstruction images 
autoencoder, and after the data analysis, we noticed that 
the differences between minimal and maximal values in 
different images in the entire dataset were too huge. Used 
min-max normalisation is computed in the preprocessed 
image in the following way: 
 

(4) 𝑣 ൌ
𝑣 െ 𝑣

𝑣௫ െ 𝑣
  

 
where: v - is the given value from the preliminary EIT 
reconstruction image with preprocessing, vmin - is the 
minimum pixel value in the image, vmax - is the maximal 
pixel value in the image, vnorm - is the output pixel value 
(normalized). 
 
Deep learning correction of EIT reconstructions 
 This section describes research leading to EIT 
reconstruction correction using a modified UNet model [26]. 
Because of the problem of training the classical UNet 
model, which uses convolutions equal to 3x3, these sizes of 
convolution filters were changed to 5x5, like in the paper 
[16]. In addition, the soft sign activation function was set in 
the model's final layer. The training was done using 120 
thousand pairs of images (with preliminary EIT 
reconstructions designated using the deterministic algorithm 
as input and reference scene images as output). All kinds of 
images during training (input and output) have 80x80 sizes. 
We are using Adam optimiser in the training process with a 
learning rate equal to 10-4, MSE loss function, and batches 
with sizes equal to 64 and 45 epochs. After training using 
the training data set, the following numerical results MAE 
loss and DICE metric [27] on training and test datasets 
were obtained: 
 
Table 1. Obtained results on training and test datasets 

DATASET MAE DICE 
training 0.0017251 97.12 
test 0.0031536 92.52 

 
The visual samples of results for three kinds of 

inclusions inside (circles, squares, circles and squares) are 
presented in Figure 1. 
 

 
Fig. 1. The sample results of EIT reconstructions correction by 
modified UNet model obtained on the test dataset 
 
Testing of modified UNet model on the real data 
 The synthetic data used for modified UNet model 
training was very similar to real data obtained in the 
laboratory. We have multiple data sets obtained using a 
custom Electrical Impedance tomograph with two types of 
inclusions dipped in water. A part of the set only contains a 
plastic tube (with a circular cross-section), while other sets 
contain a plastic tube and a metal cuboid block (with a 
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square cross-section). The plastic tube has conductivity 
smaller than water, while the metal cuboid block has 
conductivity bigger than water. 
 For each sample in each real dataset, the potential 
vectors were obtained. In addition, the potential vectors 
were also obtained for the case without any inclusion, and 
potential differential vectors were calculated and saved per 
each sample (as in the case of synthetic data). After 
obtaining potential differential vectors, the initial EIT 
reconstructions were performed using a deterministic 
algorithm (as in the synthetic data case). 
 Notice that we have only the differential potential vectors 
obtained for real data. Because we have no reference 
images, we cannot assess the results numerically. 
However, all real data sets represent the same scene, and 
we know the inclusions types and positions to assess the 
results visually. 
 

 
Fig. 2. The sample results of EIT reconstructions correction by 
modified UNet model obtained for the real data datasets 
 
 Figure 2 shows the sample results of neural corrections 
of EIT reconstructions for part of real data datasets. In one 
pair of rows, there are 10 sample results obtained per one 
different real data dataset. Each pair of rows contains initial 
EIT reconstructions (each first row) obtained using a 
deterministic algorithm and neural correction or EIT 
reconstructions by a modified UNet model (each second 
row). The first three pairs of rows represent datasets with 
one inclusion (circle), while the next rows represent both 
inclusions (circles and squares). 
 After a deep analysis of sample responses, we can 
conclude that the proper inclusions are in the correct places 
in the analysed samples, but there are many additional 
incorrect inclusions. 

 Because the additional wrong inclusions are in different 
places and the fact that we have multiple samples 
representing the same scene in each real data dataset 
using the simple postprocessing algorithm based on 
multiple images - network responses, we can eliminate the 
wrong inclusions. In the beginning, the average of images 
was calculated: 
 
(5) 𝐼𝑝𝑝, ൌ 𝐼,ೕ

  

 
where: Ipp - is the corrected reconstruction image after 
postprocessing, I - is the reconstruction image - UNet 
output for one sample, k - is the number of samples, i, j - 
are the coordinates of the image. 
 
 After that, the two thresholds are performed to extract 
inclusions with conductivity smaller than the background 
and greater than the background separately. Figure 3 
shows samples for each dataset after the first (average) 
and second (thresholding) steps of postprocessing using all 
samples in the given real data dataset. 
 

 
Fig. 3. Results of the first and second stage of the postprocessing 
algorithm of UNet model outputs for each real data dataset comes 
from the laboratory 
 
Conclusions 
 This paper used the modified UNet model for successful 
initial EIT reconstruction correction. The initial EIT 
reconstructions were computed using Kotre's regularisation 
using pseudo-inversion of the sensitivity matrix. The method 
used for initial EIT reconstruction works very fast. The 
modified model after the train was tested on synthetic and 
real data. After postprocessing outputs for real data, the 
final results seem to be good. 
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