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Abstract. Radar Target Detection (RTD) is considered to be one of the most essential parts of modern radar systems. In typical radars, detecting 
targets in noise is difficult. Conventional radar signal processing approaches such as Constant False Alarm Rate (CFAR) are adopted in an attempt 
to improve the Signal-to-Noise Ratio (SNR). However, due to the severity of the harsh and complex environments in the radar measurements, the 
target detection problem becomes extremely challenging when employing such traditional approaches. Therefore, developing a reliable and robust 
RTD technique is essential. In this paper, an augmented Doppler Filter Bank (DFB) based approach has been proposed to handle the associated 
radar drawbacks in such a complicated scenario, by incorporating the computer vision algorithms in order to separate the moving targets from the 
noisy background through a real radar dataset. A Frequency Modulated Continuous Wave (FMCW) radar has been mounted on an Unmanned 
Aerial Vehicle (UAV) for ground targets detection purposes. A real flight has been conducted in a challenging environment to assess the 
performance of the proposed system. The experimental results demonstrate the ability of the proposed system to enhance the estimated forward 
velocity to 82.8% over the conventional DFB with the CFAR detector. 
 
Streszczenie. radarowe wykrywanie celu (RTD) jest uważany za jedną z najważniejszych części nowoczesnych systemów radarowych.  W 
typowych radarach wykrywanie celów w hałasie jest utrudnione.  Konwencjonalne podejścia do przetwarzania sygnału radarowego, takie jak stała 
częstotliwość fałszywych alarmów (CFAR), są stosowane w celu poprawy stosunku sygnału do szumu (SNR).  Jednak ze względu na surowość 
trudnych i złożonych środowisk w pomiarach radarowych, problem wykrywania celu staje się niezwykle trudny przy stosowaniu takich tradycyjnych 
podejść.  Dlatego niezbędne jest opracowanie niezawodnej i solidnej techniki BRT.  W tym artykule zaproponowano podejście oparte na 
rozszerzonym banku filtrów dopplerowskich (DFB), aby poradzić sobie z powiązanymi wadami radaru w tak skomplikowanym scenariuszu, poprzez 
włączenie algorytmów widzenia komputerowego w celu oddzielenia ruchomych celów od hałaśliwego tła za pomocą prawdziwego radaru  zestaw 
danych.  Radar fali ciągłej z modulacją częstotliwości (FMCW) został zamontowany na bezzałogowym statku powietrznym (UAV) w celu wykrywania 
celów naziemnych.  Aby ocenić działanie proponowanego systemu, przeprowadzono prawdziwy lot w trudnym środowisku.  Wyniki eksperymentów 
pokazują zdolność proponowanego systemu do zwiększenia szacowanej prędkości do przodu do 82,8% w porównaniu z konwencjonalnym DFB z 
detektorem CFAR.  (Podejście oparte na rozszerzonym banku filtrów dopplerowskich do ulepszonego wykrywania celów) 
 
Keywords: constant false alarm rate, doppler filter bank, moving target detector, radar signal processing. 
Słowa kluczowe: stała częstość fałszywych alarmów, bank filtrów dopplerowskich, wykrywacz ruchomych celów, przetwarzanie sygnału 
radarowego. 
 
 

Introduction 
     Over the last decade, radars have played a vital role in 
numerous technologies for detection and tracking purposes, 
these systems are important due to their ability to operate 
with reasonable precision under diverse weather conditions. 
Furthermore, these systems have the ability to provide 
valuable information in terms of the range, azimuth, height, 
and speed of the targets. 
     The development of modern radars has been 
established during the last decade to adopt the increased 
requirements for superior radar performance in all aspects 
of civil applications such as automotive radar, air traffic 
control, aircraft navigation, remote sensing and the 
environment, ship navigation and safety, law enforcement, 
and in many other fields such as commercial, industrial, and 
medical applications, On the other hand, radar systems 
have been conducted in military applications such as land-
based air defense radar, missile control radar, airborne fire 
control radar, airborne surveillance radar, coastal and naval 
surveillance, and navigation radar[1].  
     Although these radars demonstrated their ability to 
operate in diverse and severe environmental conditions, 
their measurement accuracy is still affected by many 
factors, such as harsh environments, the maneuverability of 
the moving targets under strong clutter and interference 
conditions, and the targets that have a low signal-to-noise 
ratio. Hence, there is a significant necessity to develop 
robust and efficient approaches for detecting and classifying 
moving targets [2]. 
RTD and information extraction are considered to be one of 
the most widely utilized techniques to determine the 
presence of the desired target's echo signals among the 
noisy measurements since the reflected echo signals are 

often immersed in complex backgrounds such as noise, 
clutter, and jamming. 
     One of the essential components of RTD is digital signal 
processing, which is employed to discriminate between 
stationary and moving targets, such as a Moving Target 
Detector (MTD) [3]. 

DFB is considered to be the core element of the MTD, 
which consists of collection filters that are conducted for 
target detection purposes inside the MTD. Radar receive 
signals from many sources. 
These signals are then sorted in the DFB depending on 
their Doppler frequency. DFBs were realized by employing 
the Fast Fourier Transform (FFT) algorithm. The filters in 
the bank are designed in such a way that it passes narrow 
band frequencies depending on the number of samples for 
the received signal [4]. 
     CFAR follows the MTD, and it is able to detect real 
targets by comparing the sample value with a threshold at 
each Pulse Repetition Interval (PRI). According to some a 
priori knowledge about clutter situations, the threshold is 
estimated. It is determined that the accuracy of the CFAR 
depends on the statistical properties of the signal and the 
probability of detection. The effective accuracy of radar is 
determined by its probability of detection ሺ𝑃ௗሻ and 
probability of false alarms ሺ𝑃ி஺ሻ [5]. 
     Machine Learning (ML) has been investigated by many 
researchers toward obtaining an intelligent signal 
processing technique that has the ability to perform the 
target detection process by using different strategies.  The 
proposed algorithms aim to merge the radar measurements 
and parameters with the appropriate ML algorithms, such 
as empowerment techniques, Decision Tree (DT), Random 
Forest (RF), and Support Vector Machine (SVM). Automatic 
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feature learning is also included such as Deep Learning 
(DL) and Deep Belief Networks (DBN), Feed Forward 
Neural Networks (FNN), Deep Reinforcement Learning 
(DRL), Auto Encoder (AE), Long-Short Term Memory 
(LSTM), Recurrent Neural Networks (RNN), Convolutional 
Neural Networks (RNN), and Generative Adversarial 
Networks (GAN) [6,7]. 
     Although most of the employed ML and DL in modern 
radar have a great benefit over the traditional radar signal 
processing techniques toward improving the probability of 
detection and mitigating the false alarm rate, their 
accuracies are still affected by the amount of training data. 
Furthermore, the complexity of such trained models 
increases the consumed time for detecting the targets [8]. 
     This paper presents an alternative and robust system 
which has the capability of handling the associated 
drawbacks with both the conventional and the combined 
RTD with the various ML algorithms.  The main 
contributions of the proposed system are: First, it has the 
ability to increase the probability of detection and decrease 
the probability of false alarm for the desired targets than the 
CFAR detector by employing computer vision algorithms 
such as Otsu’s multi-level thresholding algorithm to 
segment the moving targets from the noisy background as 
well as using Random Sample Consensus (RANSAC) 
algorithm for outliers' rejection purposes. Second, a 
performance evaluation has been conducted on the 
proposed system through a real dataset that has been 
gathered during two flights in different complicated 
environments to demonstrate its feasibility of detecting the 
targets in such harsh scenarios.  Third, the proposed 
approach reduces the consumed time for the target 
detection process more than the ML and DL approach since 
it doesn’t rely on a complicated trained model, which makes 
it more suitable for real-time applications. Finally, 
Experimental results show that the proposed system 
outperforms MTD radar processors with DFB and CFAR for 
target detection. The detected targets from both systems 
are then exploited to estimate the vehicle forward velocity 
and compare it with the ground truth vehicle velocity 
obtained from the GPS/INS integration. The results 
demonstrate the capability of the proposed augmented DFB 
system to reduce the RMS forward velocity errors to 82.8% 
more than the conventional DFB with the CFAR detector.  

The organization of this paper is as follows: Section 2 
discusses related work on RTD including traditional DFB 
and CFAR detectors. The system overview of the proposed 
algorithm is presented in Section 3. The experimental 
results are presented and discussed in section 4.  Finally, 
the conclusions are given in Section 5.  
 
Related Work on Radar Target Detection 

Echo signals from the radar are often affected by noise, 
clutter, and jamming; during radar signal processing, the 
reflected signals from the radar are processed by various 
systems such as matched filtering, DFB, zero velocity filter, 
CFAR detection, etc. In order to achieve a narrow pulse 
width and high-range resolution, the radar signal is sampled 
at a certain rate, then compressed by a matched filter. 
Range-Doppler spectrum maps are obtained by applying 
Doppler processing to multiple pulses at each range unit. 
The CFAR detector determines which Range-Doppler 
signal has larger energy than the detection threshold by 
analyzing the reflected signal amplitude stored in separate 
cells. Low Doppler targets and clutters are isolated by zero 
velocity filters, and then a clutter map and threshold 
detector are applied to the output. After this, the velocity 
and position of the target can be determined [1].  
     This traditional approach uses statistical hypothesis 

testing to establish an adaptive detection threshold, which 
varies depending on the levels of clutter and noise energy. 
As a result, if a threshold is set too low, more targets will be 
detected, but false alarms will increase. On the other hand, 
if the threshold is set too high, a low number of false alarms 
is expected, but the number of targets detected will 
decrease [2]. 
     Recently, various ML-based approaches have been 
explored by researchers for target detection purposes. Hu 
and Qi present a method for developing an adaptive 
detector [10]. Their method utilizes a Neural Network-based 
approach to determine whether the background contains 
multiple targets, clutter transitions, or homogeneous noise, 
and then decide the appropriate CFAR for the estimated 
environment. Khalid et al. Research on radar Range-
Doppler for automatic target recognition using Convolutional 
Long Short-Term Memory (CLSTM) [11]. Akhtar and Olsen 
have developed a method for training an ANN using a CA-
CFAR and fixing the errors of the CA-CFAR, resulting in a 
lower ሺ𝑷𝑭𝑨ሻ [12]. Due to the intrinsic ability of neural 
networks to learn features from input data, Thornton uses 
neural networks to solve the radar clutter classification 
problem [13]. Numerous research has been developed over 
time to exploit convolutional neural networks for the sake of 
radar target identification in complex, nonstationary, and 
cluttered scenes. A signal detector has been developed 
based on a joint time-frequency analysis of radar imagery 
for target detection [14,15]. Afterward, an alternative 
approach was developed for target detection by sending the 
Range-Doppler spectrum to CNN instead of a time-
frequency analysis of radar imagery [16]. An ML based on 
DT was proposed by Deng et al. for target detection [17]. A 
CNN detector for single targets in homogeneous 
interference was developed by Yavuz et al [18]. Akhtar et 
al. presented an ANN-CFAR detector that can detect 
fluctuating targets in noisy backgrounds. Clutter detection is 
more common but more challenging than detecting targets 
within noise backgrounds [19]. Although most of the 
previously employed ML and DL in modern radar has a 
great benefit over the traditional radar signal processing 
techniques toward improving the probability of detection 
and mitigating the false alarm rate, their accuracies are still 
affected by the amount of training data. Furthermore, the 
complexity of such trained models increases the consumed 
time for detecting the targets. 
 
System Overview 
     In this section, the hardware setup has been introduced 
for the proposed augmented DFB system which attempts to 
tackle the associated challenges with the conventional 
signal processing techniques and to improve the RTD by 
segmenting the noisy background from the desired echo 
signals. Fig. 1 demonstrates the proposed system's block 
diagram.  

 
Fig.1. Radar target detection system block diagram 
 
Hardware Setup 
     The operational frequency of the utilized FMCW radar is 
24 GHz. The radar has a resolution of 0.1 degrees, a +/- 10-
degree elevation-plane accuracy, and a +/- 15-degree 
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azimuth-plane accuracy. It is composed of three receivers 
microstrip patch antennas and one transmitter. With a 
resolution of 1 meter, the radar can detect objects up to 100 
meters away from people and 300 meters away from 
vehicles. 
     The Quadcopter is mainly controlled by Pixhawk-2 
autopilot which is equipped with multiple sensors such as 
MS5611 barometer, U-Blox GPS, and InvenSense MPU-
6000 MEMS IMU. During the flights, the payload (420g) for 
the experiments comprises the radar system at the UAV 
belly connected through ethernet to a BULLET-M, 2.4 GHz 
28dBm transmitter with Omni direction antenna (BM2HP by 
Ubiquity) with the ability to transmit 100+ Mbps. On the 
other side, a Nano Station-M is connected to the ground 
station to collect the data from the radar as shown in Fig. 2. 

 
Fig.2. Hardware setup configuration 
 
Radar Data Acquisition 
     FMCW radar has been mounted on a UAV to detect 
moving targets. A frequency-modulated sawtooth chirp is 
continuously emitted by the attached micro-radar 
throughout the flight 𝑓ோி ்௑ across the ground objects can 
be expressed as: 

(1)      𝑓ோி ்௑ ൌ 𝑓ୡ ൅ 𝛼 𝑡       , 0 ൑ 𝑡 ൏  𝑇                                 

(2)     𝛼 ൌ
஻

்
                                                                        

Where 𝑓௖ is the carrier frequency, 𝛼  is the frequency sweep 
rate, 𝐵 is the transmitted chirp signal bandwidth and  𝑇  is 
the frequency sweep time. 
Signals are transmitted towards the target and the reflected 
signal is obtained at the receiver with a small frequency 
shift ∆𝑓 and a propagation time delay ∆𝑡 between the two-
radiated frequency. These frequency and time delays occur 
as a result of the range propagation influence. The 
propagation delay time between the received and the 
transmitted signals is given by: 

(3)                                ∆𝑡 ൌ 2
ୖ

௖
 

Where c is the speed of light, and R is the range between 
the radar antenna and each scatterer inside the beam width 
of the radar. The frequency of the received signal is shifted 
by the time delay ∆t  as: 

(4)              𝑓ோி ோ௑ ൌ 𝑓ୡ ൅ 𝛼 ∗ ሺ𝑡 െ ∆𝑡ሻ  , ∆𝑡 ൑ 𝑡 ൏ 𝑇 ൅ ∆𝑡          
                                                                                 
The received signal is then mixed with the originally 
transmitted signal and passed through a low pass filter to 
obtain the video signal 𝑥ሺ𝑡ሻ that has a low differential 
frequency or Beat frequency 𝑓௕ as follows: 

(5)                               𝑓௕ ൌ 𝛼 ∗ ∆𝑡                                     

By substituting from Eqn. (2,3) in Eqn. (5),   𝑓௕ can be 
rewritten as: 

(6)                               𝑓௕ ൌ
஻

்
∗ 2

ோ

௖
                                     

The Doppler frequency 𝑓ௗ௢௣௣௟௘௥ is then extracted from 
the phase changes of this signal. This allows for 
determining the velocity of the target. The utilized radar has 
a 12.150 khz repetition rate for the transmitted chirps. In 
each chirp, 256 sampling points were taken with a sample 
rate of 264 ns.  

A bank of Doppler filters is the core of the MTD signal 
processor which reduces clutter and noise, This Doppler 
filter bank is realized for MTD by the FFT algorithm. 

 A baseband signal is generated by digitizing the 
received radar signal after it has been digitized using an 
A/D converter. In order to make the target decision, a series 
of algorithms for the proposed system after Range-Doppler 
processing is based on FFT. After sampling the received 
signal, the first step is to perform an FFT so that there is a 
correspondence between each sample and a “bin” to 
determine the range information over the “fast time”. The 
procedure is repeated for every chirp that forms a frame. As 
soon as all the chirps in a frame are acquired and 
processed, doppler-FFT is performed to determine the 
target's velocity. Every N chirp, this evaluation is performed 
once per frame. Due to this, it is also referred to as "slow 
time." Finally, the third dimension of the radar cube contains 
information about the target's spatial position, which is 
derived from the combined spatial information along all 
channels. After applying the FFT for the sampled signals, a 
mean Range-Doppler Map (RDM) is generated that has 
256x256 pixels with a 32-Bit amplitude value for each pixel. 
Fig. 3 demonstrates the RDM image where the horizontal 
axis provides the speed measurements while the vertical 
axis presents the range measurements. Each pixel has a 
32-Bit value to represent the strength of the received 
signals from various earth scatters.  This constructed image 
is then exploited for detecting targets [20, 21]. 
 

 
Fig.3. Reflected ground signals in the RDM image 

Target Detection 
Wavelet denoising 

The acquired RDM contains random noises which are 
affecting the accuracy of the detected targets and the 
estimated vehicle forward velocity from the RDM as well. 
There are different denoising schemes to remove such 
random noise while preserving the remaining original image 
information such as the edges, contrast, brightness, and 
background of the image. Wavelet transform is one of the 
effective algorithms utilized for denoising purposes. The 
wavelet technique for image denoising is based on the 
threshold function and calculated by: 
 

(7)                           𝑇𝐻 ൌ ඥ2𝑚 ∗ logሺ𝑝ሻ                           

Where 𝑚 is the mean of the image, and 𝑝 is the total 
number of pixels of the image. This threshold function is 
calculated at the different scale level [22]. 
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Otsu's Multi-Level Thresholding 
     The denoised RDM image is then segmented into 
multiple layers based on Otsu's multi-level thresholding 
algorithm. As a general rule, automatic thresholding 
involves selecting an optimal gray-level threshold value 
based on the gray-level distribution of objects of interest in 
an image to separate them from the background [23].  
     By using gray values as the basis for the image and 
selecting a convenient threshold for separating the target 
from the background, in order to calculate the maximum 
variance between the background and foreground of an 
image, the maximum inter-class variance threshold image 
segmentation method is used. 
     In general, the greater the variance in this method, the 
greater the difference between the two parts [24]. The 
fundamental idea behind the threshold segmentation 
algorithm based on the OTSU is described in the following: 
Considering an image with L gray levels [0,1,2, …L-1], 𝑛௜ is 
the number of pixels at level 𝑖 , and the total number of 
pixels is given by 𝑁 ൌ 𝑛ଵ ൅ 𝑛ଶ ൅ ⋯ 𝑛௅.The probability of the 
gray level 𝑖  is given by: 

(8)                         𝑝௜ୀ
೙೔
ಿ

    , 𝑝௜ ൒ 0                                        

pixels of An image are divided into two classes 𝐶଴ and 𝐶ଵ 
according to the bi-level thresholding method  at gray level 
threshold 𝑡 such that 𝐶଴ = ሼ0,1,2, … … , 𝑡ሽ and 𝐶ଵ = ሼ𝑡 ൅ 1, 𝑡 ൅
2, 𝑡 ൅ 3, … . . , 𝐿 െ 1ሽ . For the two classes, the gray level 
probability distributions are as follows: 

(9)                        𝜔଴ ൌ ∑ 𝑝௜
௧
௜ୀ଴                                              

(10)                      𝜔ଵ ൌ ∑ 𝑝௜
௟ିଵ
௜ୀ௧ାଵ                                            

As a result, the means of the two classes can be calculated 
as follows: 

(11)                      𝜇଴ ൌ ∑ 𝑖𝑝௜
௧
௜ୀ଴ /𝜔଴                                     

(12)                      𝜇ଵ ൌ ∑ 𝑖𝑝௜
௅ିଵ
௜ୀ௧ାଵ /𝜔ଵ                                      

The total mean 𝜇் of the gray levels is calculated as 
follows:   

(13)                      𝜇் ൌ 𝜔଴𝜇଴ ൅ 𝜔ଵ𝜇ଵ                                   

The class variances are calculated as follows: 

(14)                  𝜎ଶ
଴ ൌ ∑ ሺ𝑖 െ 𝜇଴ሻଶ௧

௜ୀ଴ 𝑝௜/𝜔଴                           
(15)                 𝜎ଶ

ଵ ൌ ∑ ሺ𝑖 െ 𝜇ଵሻଶ௅ିଵ
௜ୀ௧ାଵ 𝑝௜/𝜔ଵ                          

The within -class variance is calculated as: 

(16)                 𝜎ଶ
ௐ ൌ ∑ 𝜔௄𝜎ଶ

௄
ெ
௄ୀଵ                                        

The between-class variance is calculated as: 

(17)                 𝜎ଶ
஻ ൌ 𝜔଴ሺ𝜇଴ െ 𝜇்ሻଶ ൅ 𝜔ଵሺ𝜇ଵ െ 𝜇்ሻଶ 

The total variance of the gray levels is calculated as follows: 

(18)                         𝜎ଶ
் ൌ 𝜎ଶ

ௐ ൅ 𝜎ଶ
஻ 

According to the Otsu method, the optimum threshold 𝑡  is 
selected by maximizing the between-class variance, which 
is the same as minimizing the variance within-
classvariance, since the total variance for different partitions 
is constant; the optimal threshold 𝑡  is calculated as follows: 

(19)     𝑡 =𝐴𝑟𝑔ሼmax଴ஸ௜ஸ௅ିଵሼ𝜎ଶ
஻ሺ𝑡ሻሽ  ሽ 

= 𝐴𝑟𝑔ሼmax଴ஸ௜ஸ௅ିଵሼ𝜎ଶ
ௐሺ𝑡ሻሽ  ሽ 

In addition to the Otsu method, a multilevel thresholding 
method can be implemented.  Assuming that there are M-1 
thresholds ሾ𝑡ଵ, 𝑡ଶ, 𝑡ଷ, … … 𝑡ெିଵሿ that divide the Image pixels to 
M classes ሾ𝑐ଵ, 𝑐ଶ, 𝑐ଷ, … … 𝑐ெሿ the result will be as follows:  
(20) 

ሾ𝑡ଵ, 𝑡ଶ, 𝑡ଷ, … … 𝑡ெିଵሿ ൌ 𝐴𝑟𝑔 ቄ max
଴ஸ௜ஸ௅ିଵ

ሼ𝜎ଶ
஻ሺ𝑡ଵ, 𝑡ଶ, 𝑡ଷ, … … 𝑡ெିଵሻሽ  ቅ 

ൌ 𝐴𝑟𝑔ሼmax଴ஸ௜ஸ௅ିଵሼ𝜎ଶ
ௐሺ𝑡ଵ, 𝑡ଶ, 𝑡ଷ, … … 𝑡ெିଵሻሽ  ሽ        

 In the Otsu method, the optimum threshold 𝑡 is determined 
by maximizing the between-class variance 𝜎ଶ

஻, which is the 
same as minimizing the within-class variance 𝜎ଶ

ௐ, since 
the total variance 𝜎ଶ

் ൌ 𝜎ଶ
ௐ ൅ 𝜎ଶ

஻  remains constant for 
given image. After performing the multiple thresholding 
segmenting process on the RDM image, a heat map 
(colored spectrum) image is created to discriminate the 
boundaries of each segment from the others segments as 
shown in Fig. 4. 
 

 
 
Fig.4. segmented image by proposed Otsu multilevel thresholding 

      
     The decomposed segments of the RDM image have 
been demonstrated in Fig. 5 after applying the Otsu 
multilevel thresholding algorithm. 
 

 
Fig.5. Otsu multilevel thresholding algorithm Image decomposition 
 
Decision Making 
     In order to separate the foreground targets from the 
noisy background, two thresholds have been conducted 
based on the mean of the target velocity, and the velocity 
spread (difference between max and min velocity values on 
the RDM image). The proposed thresholds demonstrate 
their ability to successfully reject noisy background 
segments from the image foreground. The main concept 
behind the employed thresholds is that they exploit the 
boundary limitations of the measured speed by the radar for 
the detected targets. Since the utilized radar is capable of 
measuring the detected target's velocity up to 5 m/sec and 
the sign representing the direction of the target motion with 
respect to the radar, the target velocity will not exceed this 
limit. Therefore, any scatters that have a velocity exceeding 
this limit (0 to 5 m/sec) will be treated as a noisy 
background. In addition, it has been noticed that the noisy 
background is spread over a large area of the RDM image 
and covers a large range of velocities values approximately 
from -5 up to +5 m/sec. Based on this fact, the mean of the 
velocity's values for the background will be a very small 
value (almost near zero) and the spread of the velocity's 
values will be greater than the maximum allowed value, 
which is 5 m/sec. 
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Fig. 6 illustrates a histogram for the velocities 
distribution over each segment of the RDM image. These 
histograms are utilized to estimate the mean and spreading 
thresholds level for each segment to decide whiter to accept 
or reject this segment. 

      
Fig.6. histogram for the whole RDM segmented image 
 
     These histograms are utilized to estimate the mean and 
spreading thresholds level for each segment to decide 
whether to accept or reject. Fig. 7 shows the unwanted 
removed background after applying the decision-making 
process. 
 

 
Fig.7. unwanted removed background 
 
Outlier Rejection by RANSAC Algorithm 
     The RANSAC algorithm is utilized for outliers (incorrect 
matches) rejection in each segment. The RANSAC is 
applied to resample each segment in the RDM iteratively. 
With this recursive approach, a minimum number of 
observations (data points) is used in order to estimate the 
parameters of the underlying model, and candidates are 
generated. To generate an initial solution, RANSAC uses 
the smallest possible set and then prunes outliers [25]. The 
basic idea of the RANSAC algorithm is described as 
follows:  
1) determine the model parameters by choosing at random 
the minimum number of points. Calculate model parameters 
from the samples. 
2) calculate the number of points that fit within a predefined 
tolerance from the set of all points. 
3) it is recommended to re-estimate the model parameters 
if the ratio of the total number of points to the number of 
inliers exceeds the threshold of a predefined. 
  The same procedure is repeated approximately a fixed 
number of times, resulting in either a model that is denied 
because there are not enough points in the refined model 
with an appropriate consensus set size. In such a case, the 
refined model is saved if its consensus set is greater than 
the previous model that was saved. 
An appropriate number of iterations, 𝑁,  is chosen high 
enough in order to ensure that there is no outlier in the 
probability 𝑝 that at least one of the sets of random 
samples. Consider 𝑢 to be the probability that any selected 
data point is an inlier and the probability of observing an 
outlier is 𝑣 ൌ  1 െ  𝑢. The minimum number of points 𝑚 for 
𝑁 iterations are required, where 

(21)                        1 െ 𝑝 ൌ ሺ1 െ 𝑢 ௠ሻ ே 

Thus, by manipulating some parameters, 

(22)                        𝑁 ൌ
୪୭୥ሺଵି௣ሻ

୪୭୥ሺଵିሺଵି௩ሻ ೘ሻ
 

    Fig. 8 illustrates the resulted segments after applying the 
RANSAC algorithm for outlier’s rejection and Fig. 9 
illustrates the gathered segments after removing the noisy 
background and rejecting the outlier’s. 

Fig.8. resulted segments after applying the RANSAC algorithm 
 

Fig.9. gathered segments after removing the noisy background and 
rejecting the outlier’s 
 
Experimental Results 
     A real flight with Solo Quadcopter has been performed 
over a farm which includes a variety of objects at various 
altitudes such as houses, hangars, trees, and cars in order 
to assess the proposed method's performance for 
augmented DFB versus the conventional DFB with the 
CFAR detector. The utilized UAV has been equipped with 
Pixhawk-2 autopilot that contains InvenSense MPU-6000 
MEMS Inertial Measurements Unit (IMU), U-Blox GPS, and 
MS5611 barometer. These sensors are utilized for 
positioning and localization purposes. The employed radar 
has been attached to the belly of the UAV and tilted toward 
the ground by 60 degrees to detect ground scatters. The 
flight trajectory involved 18 waypoints of a total flight 
duration of 393secs, with a maximum speed of 5m/s 
according to Fig. 10. 
 

 
Fig.10. UAV flight trajectory 
 
     CFAR is widely deployed for radar target detection, 
which is utilized to separate out specific information from 
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the background of the received signals. CFAR is designed 
to detect targets by estimating the threshold power level 
adaptively and identifying them when the returned echo 
signal exceeds it, in this method of detection, the power of 
the Cell Under Test (CUT) compared with the power of its 
neighbours. 
     Although CFAR is an effective detection method for a 
variety of applications, such as airborne radars and ground 
radar stations, it does not fit the proposed system since 
ground scatters have similar power levels to RDMs, making 
it inconvenient for the proposed system. Fig. 11 shows the 
CFAR-detected targets in the RDM image where a part of 
the arc from the ground objects has been detected, though 
the rest has been missed. 

 
Fig.11. RDM image with CFAR target detection 
 
     In addition, CFAR detected an apparent false target 
(noise) with a prominent power level when compared with 
its background. The first challenge occurs when estimating 
CUT power from patched areas with real ground scatter 
while inside a patched area of CUT with a surrounding 
background. As a result of the CUT's power level being the 
same as its neighborhood, the CFAR was unable to detect 
all targets in this case. The second problem occurs as a 
result of random noise with a relatively high-power level in 
comparison to its local neighborhood.  
     Contrary to the CFAR, an alternative system based on 
computer vision algorithms (Augmented DFB) has been 
proposed to handle these limitations in such complicated 
and noisy environments. Since there is no information about 
the exact ground truth pixel size of the detected targets, it is 
impossible to estimate the probability of detection and false 
alarm. Therefore, another approach has been proposed for 
the sack of assessment and comparison between the 
proposed system and the conventional one. The estimated 
vehicle forward velocities from both the proposed system 
and the DFB with the CFAR detector are exploited to 
evaluate the performance of both systems with respect to 
the reference velocity which is obtained from the GPS/INS 
integration. The main reason for employing vehicle forward 
velocity is the direct correlation between the coordinates of 
the detected target and its corresponding velocity on the 
RDM image. Hence, the RMS errors on the estimated 
forward velocity will increase as long as incorrect scatters 
coordinates are treated as a detected target. 
In Fig. 12, the estimated forward velocities from the 
augmented DFB, and the DFB with the CFAR detector are 
compared to the UAV reference forward velocity with RMS 
error values of 0.9, and 4.1 m/s respectively. 
 
 
 

 
Fig.12. Comparison between forward ground truth velocity,which 
obtained from (GNSS/INS) integration, estimated velocity from the 
proposed augmented DFB, and the DFB with the CFAR detector. 
 

Table.1 provides a comparison of the RMS error values 
for forwarding velocities from the augmented DFB, and the 
DFB with the CFAR detector is compared to the UAV 
reference forward velocity.       

The results demonstrate the ability of the proposed 
system to reduce the average RMS velocity error to 17.2% 
relating to the reference velocity during the whole flight of 
the UAV. 
 
Table 1.  

Symbol Symbol 
RMS Error During 

[393 sec] 

Froward Velocity 
Error 

Augmented DFB 0.27 

DFB with the CFAR 
Detector 

1.57 

 
Conclusion 
     Target detection is an essential part of modern radar. 
This paper proposes an alternative system to replace an 
important processing part of conventional radar signal 
processing hypothesis testing. The main aim of the 
proposed system is to enhance the probability of detection 
by improving the accuracy of the estimated forward velocity 
for the detected targets in high-clutter environments over 
the conventional DFB with the CFAR detector. This goal 
has been achieved by employing a series of algorithms 
such as Wavelet denoising to reduce the random noise in 
RDM image, Otsu’s multi-level thresholding algorithm to 
segment the moving targets from the nosey background, 
two thresholds based on the mean of the target velocity, 
and velocity spread to separate the foreground targets from 
the noisy background as well as using RANSAC algorithm 
for outlier’s rejection purpose. Based on the gathered data 
during a real flight, a comparison between the performance 
of the proposed system versus the Conventional detectors 
based on Doppler filtering and CFAR detection has been 
performed. The experimental results demonstrate the 
proposed system's superiority in reducing the RMS forward 
velocity errors to 17.2% and enhancing the estimated 
forward velocity to 82.8% over the conventional DFB with 
the CFAR detector. 
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