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Adaptive Neuro-Fuzzy Sliding Mode Controller (ANF-SMC) to
control speed, electromagnetic torque (EMT), Stator Current,
and Back EMF using PMBLDCmotor(PMBLDCM) in Electric
Propulsion of Electric Vehicles

Abstract. In present days conventional vehicles were replaced by electric vehicles due to their low maintenance and eco-friendly nature with
PMBLDCM motor due to its simple design, long-term usage, low noise, speed response, stability, and high efficiency. In electric vehicles, the speed
control method is still difficult with PMBLDC motor to produce the desired high torque and to deal with uncertainty problems due to dynamic loads
which cannot apply in conventional vehicles. To overcome these problems, we proposed the usage of Adaptive Neuro-Fuzzy Sliding Mode Control
(ANF-SMC) which also handles electromagnetic torque (EMT), back EMF and stator current, nonlinear and uncertainties in the electric propulsion
subsystem of electric vehicles by applying adaptive neuro-fuzzy sliding mode control for effective speed regulation and parameter tuning of the fuzzy
system based on performance index of PMBLDC motor in the absence, presence and variable speed conditions. The simulation was done using the
designed approach with MATLAB/Simulink R2020b with a Fuzzy tool kit and the performance of the proposed controller was compared with existing
PID, SMC, FSMC, and AFSMC controllers to validate its success in improving the system characteristics. Simulation results infer that the proposed
ANF-SMC controller with no overshoot and less rise, peak, and settling time than that of existing systems under different loads and variable speed
conditions.

Streszczenie. W dzisiejszych czasach pojazdy konwencjonalne zostaty zastgpione pojazdami elektrycznymi ze wzgledu na ich niskie koszty
utrzymania i przyjazny dla $rodowiska charakter z silnikiem PMBLDCM ze wzgledu na jego prosta konstrukcje, dfugotrwate uzytkowanie, niski
poziom hatasu, szybko$¢ reakcji, stabilno$¢ i wysokg wydajno$é. W pojazdach elektrycznych metoda sterowania predkoscig jest nadal trudna w
przypadku silnika PMBLDC do wytworzenia pozgdanego wysokiego momentu obrotowego i radzenia sobie z problemami niepewno$ci wynikajgcymi
z obcigzen dynamicznych, ktérych nie mozna zastosowac¢ w konwencjonalnych pojazdach. Aby przezwyciezy¢ te problemy, zaproponowalismy
wykorzystanie Adaptacyjnego Neuro-Fuzzy Sliding Mode Control (ANF-SMC), ktéry obstuguje réwniez moment elektromagnetyczny (EMT),
wsteczng site elektromotoryczng i prad stojana, nieliniowosc i niepewno$ci w poduktadzie napedu elekirycznego pojazdéw elektrycznych poprzez
zastosowanie adaptacyjne sterowanie trybem $lizgowym neuro-fuzzy w celu efektywnej regulacji predko$ci i strojenia parametréw systemu
rozmytego na podstawie wskaznika wydajnosci silnika PMBLDC w warunkach nieobecno$ci, obecno$ci i zmiennej predkosci. Symulacja zostata
przeprowadzona przy uzyciu zaprojektowanego podejscia z MATLAB/Simulink R2020b z zestawem narzedzi Fuzzy, a wydajno$¢ proponowanego
kontrolera zostata poréwnana z istniejgcymi kontrolerami PID, SMC, FSMC i AFSMC, aby potwierdzi¢ jego sukces w poprawie charakterystyki
systemu. Wyniki symulacji wskazujg, ze proponowany sterownik ANF-SMC nie ma przeregulowania i ma krétszy czas narastania, wartosci
szczytowej i ustalania niz w istniejacych systemach przy réznych obcigzeniach i warunkach zmiennej predkos$ci. (Adaptacyjny kontroler trybu
slizgowego Neuro-Fuzzy (ANF-SMC) do sterowania predkoscia, momentem elektromagnetycznym (EMT), pradem stojana i wsteczng sitg
elektromagnetyczng za pomocg silnika PMBLDCmotor (PMBLDCM) w napedzie elektrycznym pojazdow elektrycznych )

Keywords: Adaptive Fuzzy SMC, Adaptive-neuro Fuzzy SMC, Fuzzy SMC, Permanent Magnet Brushless DC Motor.
Stowa kluczowe: kontroler adaptacyjny, logika rozmyta, bezszczotkowy silnik pradu statego.

1. Introduction

Drastically change in vehicle technology is essential
due to the crisis of the automotive industry because of high
oil prices and outdated designs. Electric and hybrid electric
vehicles are optimal solutions due to advancements in
electric machines, power electronics, and artificial
intelligence control mechanisms. More significance is given
to research on Power Propulsion systems in electric
vehicles in the automobile industry. In EV driving systems
irrespective of model, parameter variation and any load
disturbances the motor speed should follow a specified
reference trajectory. In addition to this, it should also cover
constant torque and power regions. In electric vehicles
where space and weight place an important role, the use of
Permanent Magnet Brushless DCMotor (PMBLDCM) is the
best choice and also more suitable for high power density
design. PMBLDCM motors with greater influence because
of their simple design, long-term usage, low noise, and
electromagnetic interference, speed response and stability,
high efficiency, and high applied output torque. PMBLDC
motor works with high efficiency in electric vehicle
propulsion systems achieved due to the elimination of
secondary losses and with simpler rotor cooling. PMBLDC
motor drive and its controller plays a crucial role to reduce
cost and weight in the conversion of existing conventional
vehicles to electric vehicles [1, 2, 3, 4, 5], and in designing
new electric vehicles. The usage of PMBLDC motors in
electric vehicles is not optimal due to varied set points when

passing the incline. Many existing controllers such as PID
[6, 7, 8 to 10], NAFLC, and AFLC were referred to improve
the PMBLDC motor drive performance. In dynamic load
conditions quick response, and settling time with zero
overshoot are important characteristics of a good controller,
which cannot be achieved with conventional controllers. In
the case of conventional controllers such as Pl and PID, the
response will be slower with a variable set point. These
controllers were inefficient in case of higher order,
nonlinear, time delay, and complex systems without an
accurate  mathematical model. Disadvantages of
conventional controllers were overcome with the usage of
SMC, NAFLC, AFLC, and NNC using individually or hybrid
together. To deal with inaccurate mathematical models'
fuzzy logic control (FLC) is used for speed control of the
PMBLDC motor by generating required control commands.
However, to solve the fuzzification and defuzzification
processes of FLC time requirement is greater than
conventional controllers. In the case of neural network
control (NNC), performance results of PMBLDC motor
speed were affected by uncertainty and load disturbances.
To overcome these disadvantages Sliding Mode Control
(SMC)is widely used in the control of PMBLDC motors
because of its simple structure, easy implementation, fast
response, and ability to handle parametric uncertainties. To
achieve low overshoot, small rise, and settling time,
performance with a better steady response system in
PMBLDC motor hybrid control techniques were widely
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used. In previous studies Fuzzy tuned PID (FPID) or
NAFLC, AFLC, ANFIS [11, 12], Sliding Mode Control,
FSMC [13], Adaptive], and NFSMC control schemes were
used in BLDC motor for generating fast response and high
efficiency[14 to 16]. In the case of Fuzzy PID control speed
response obtained during load variations exhibit over and
undershoot. Incontroller, to train the FLSC reference plant
model is needed. In the study of existing controllers, the
simulation and experimental results indicate the parameters
especially concentrated on load disturbances. To overcome
limitations faced by existing conventional controllers, the
proposed method PMBLDC motor is used to predict back
electromagnetic force and to reduce uncertainty under
dynamic load conditions. Adaptive Neuro-Fuzzy Sliding
Mode Controller (ANF-SMC) to PMBLDC motor proposed in
this work by taking salient features of ANN, FL with SMC to
reduce uncertainty and load disturbance generated by
PMBLDC motor in EVs. The proposed ANF-SMC controller
is used to compensate limitations of SMC, to enhance the
online adaption ability of the system with the minimum
number of user-defined rules, and to overcome the
uncertainty problem. In the implementation of the work the
mentioned steps were done:

e To design ANF-SMC toPMBLDC motor in EVs.

e Simulate dynamic responses of the proposed ANF-

SMC for different load conditions.

e Comparing simulation results obtained speed,

EMT, stator current, and back EMF values by the

proposed controller with  existing conventional

controllers used in EVs.

e Validating the proposed ANF-SMC controller in the

improvement of the system.

In this paper section 1 deals with an introduction,
section 2 describes the used electric drive ftrain,
mathematical model, and speed controller simulation of
PMBLDC, section 3 explanation on the design of the
proposed controller, section 4 deals with simulation and

comparative simulation results under different load
conditions and conclusion part in section 5.
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Fig. 1. Description of electric drive train used in EV configuration

2. PMBLDCM Motor
2.1 Explanation of used electric drive train

The used electric drive train is represented in Fig.
1.which consists of an electric propulsion subsystem with
ANF-RBC controller, power converter, Permanent Magnet
BLDC motor with  ANF-SMC controller, and mechanical
transmission. The energy source subsystem consists of
Lithium lon Battery [2] /Electro Chemical Double Layer
Capacitors Hybrid Electrical Energy Storage System
(LiBs/ECDLCs-HEESS), an energy refueling unit, and a
semi-empirical Adaptive Neuro-Fuzzy Rule Based Energy
Management System. The auxiliary subsystem consists of
temperature control, power steering, and an auxiliary power

supply unit. Based on input from the brake and accelerator
in EVs, the ANF-RBC controller produces a control signal to
the used power converter by regulating power flow in
between the PMBLDC motor and used hybrid electrical
energy storage system (LiBS/ECDLCs-HEESS). In the
electric propulsion subsystem to reduce uncertainty and
load disturbance generated by the PMBLDC motor, a hybrid
control approach is used in the ANF-SMC controller. This
hybrid electrical energy system possesses the ability to
accept regenerated energy with the cooperation of the
proposed controller.
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Fig. 2. Block diagram of PMBLDC Motor Driving

2.2 PMBLDC Motor Mathematical Model

PMBLDCM is a three-phase synchronous machine with
PM rotor wiring distributed with 120° in connection stator
with Y connection and equal resistance R in each phase
has trapezoidal back EMF [17, 18, 19] waveform. Fig. 2.
represents PMBLDC Motor Driving System.
PMBLDC motor phase voltage represented by equation 1

(1) V=Rsl+SxixI+E

Phase voltage applied (V)= [VE,,VbVC]T

Stator Resistance (R)=diag[R]

Phase Current (1) = [lalblc] and

back EMF voltage (E) = [e. e, e for PMBLDCM
respectively.

Inductance matrix S is represented as equation 2

L-M 0 0
@ S= 0 L-M 0
0 0 L-—-M

Where self-inductance (L) and mutual inductance (M) of
PMBLDC motor.

Based on phase current and Back EMF, the EMT of
PMBLDC is represented by equation 3

eqlgteplptecl
3 T — Zaa b cic
( ) emf W

Where Tenr is the EMT of the PMBLDC motor and w,, is the
angular velocity

Mathematical model of PMBLDC motor found by using
Tioad, J, @and Vi,

Motor motion is represented as equation 4

(4) Temf = Tioad= J d:)_tm + Vg

The mechanical speed of the rotor (wy)is calculated as in
equation 5

(5) wm: f Temf_Tlo;d_Vfrmm dt

Current to the stator windings are shown as equation 6
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I sin(w,t + )
a . 2T
©) H: sin (ot + =),
led | sin (ort+a+%)

Where maximum current applied (Imax), angle difference (a)
and rotor electrical speedw,.
23 PMBLDCM Motor and
Simulation Description

Fig. 3.described the PMBLDCM speed control
simulation using an ANF-SMC controller. The described
circuit has a closed loop to control the speed using DC bus
voltage with the inverter. The control signal and switching
logic given to the three-phase voltage inverter generated a
signal of feedback error and reference speed given to the
controller block.
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Fig. 3. Description of PMBLDC Motor Speed Controller simulation
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Fig. 4. Description of PMBLDC motor simulation

Fig. 4. described PMBLDCM simulation using an ANF-
SMC controller. The described circuit has a closed loop to
control speed, EMT, back EMF, and stator current using
PMBLDCM with the source of current, controller, rectifier,
and three-phase inverter and their connections as shown in
the figure.

3. Control Design
3.1 PID Architecture

PID Control is linear and symmetric with constant
parameters and employs feedback by combining
advantages of dependent, independent, and inconsistent
systems governed by nonlinear differential equations as
shown below gives a quicker response time which is
represented in Fig. 5. The main limitation of SMC controller
is that we cannot use when the system has two elements
competing, noise is present in controllers’ response.
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Fig. 5. PID Control Simulation Diagram

InTable1. And Table 2. truth tables of Gates used;
Decoders used in the PID controller were shown
respectively.

Table 1. Truth-Table of Gates used in PID Controller

emf al emf b | emfc | Q1 Q2| Q3| Q4| Q5| Q6
0 0 0 0 0 0 0 0 0
0 -1 +1 0 0 0 1 1 0
-1 +1 0 0 1 1 0 0 0
-1 0 +1 0 1 0 0 1 0
+1 -1 1 0 0 0 0 1
+1 -1 0 1 0 0 1 0 0
0 +1 -1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0
Table 2. Truth-Table of Decoder used in PID Controller
ha ha ha emf_a emf_b emf_c
0 0 0 0 0 0
0 0 1 0 -1 +1
0 1 0 -1 +1 0
0 1 1 -1 0 +1
1 0 0 +1 0 -1
1 0 1 +1 -1 0
1 1 0 +1 -1
1 1 1 0 0
Wy e : g
w!
E
l T+
d

dt 1l 3k

sgn(s)

Fig. 6. SMC Control Simulation Diagram

3.2 SMC Architecture

Sliding Mode Control is a nonlinear discontinuous
approach governed by ordinary differential equations
characterized by various parameters and designed by
considering sliding hypersurface and suitable control law.
The main aim of this controller is to control the speed of the
PMBLDC motor for desired value tracking even in presence
of disturbances; it also combines maximum torque with
vector control strategy represented in Fig. 6.and its sub-
system in Fig. 7. The main limitation of SMC controller is
the chattering problem. The figure describes the simulation
and sub-system of SMC control.
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Fig. 7. Sub System of SMC Simulation
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Fig. 8. Sub-System of FSMC Simulation

3.3 FSMC Architecture

To overcome the main drawback of sliding mode control
chattering phenomena Fuzzy Sliding Mode Control (FSMC)
scheme is used to improve system performance with speed
compensation. This architecture combines SMC used to
improve system robustness and fuzzy logic control to
increase the learning ability by providing better damping
and reduced chattering effect. Fig. 8.shows the block
diagram representing the PMBLDCM controller's
subsystem. In Table3. fuzzy rules used in the FSMC
controller are described.

Table 3. The table describes fuzzy rules used in FSMC
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Fig. 9.. Sub System of AFSMC Simulation

Table 4: The table describes fuzzy rules used in AFSMC

ele’ NB NS 4 PS PB

NB NB NB NB NS 4

NS NB NB NS 4 PS

4 NB NS 4 PS PB

PB NS Y4 PS PB PB

PS z PS PB PB PB
_:"'}_.:i rr (1

9

Fig. 10. ANF-SMC Control System Diagram

ele| -5 -4 -3 -2 -1 o 1 2 3 4
-5| 5§ 5 5 5 5 5 4 3 2 :
I}—.—HJJ. '
4 5 5| 5| 5] 5/ 43 2/ 1| of - a | | _.j
D .
-3| 9§ 5 5 5 4 3 2 1 0 -1 -2 "
2| 5 5/ 5/ 4/ 3 2 1 o -1 -2| -3 _.:
1| 8 5| 4| 3] 2| 1 9 -1 -2| -3| -4 i
ol 4 4 3 2 1 o -1l -2 3 4 5| Fig. 11. ANF-SMC Control Subsystem Diagram
1 4 3 2| 1 0 -1 -2 -3 4| -5| -5| Table5. ANF-SMC Fuzzy Rule for e/é
2 3 2 1 0 -1 -2l -3 4 -5 -5 -5 ele| -5 -4 -3 -2 -1 o 1 2 3 4
3l 2 1| o| 1| -2| 34 5| 5/ -5/ 5| | 5 § 5 5 5 5 84 3 2/ 1/ 0
4 1 o -1 -2 -3| -4-8 -5 -5| -5| -5 4| 8 5| 5| 5| 5| 43 2 1] of -
5/ 0 -1 -2 -3 4| -§ -5 -5 -5 -5 -5 -3 5 5 5 5 4 3 2 1 0 -1 -2
2§ 5| 5| 4| 3] 21 o] 1| -2/ -3
3.4 AFSMC Architecture
. Al 58 5| 4| 3| 2| 1419 1| 2| -3 -4
Lack of design technique is the limitation of FSMC;
for the same performance of system fuzzy rules varies and 0 § 4 3 2 1 Q-1 2] 3] 4 5
selecting suitable membership functions is also difficult. To 1 4 3 2 1 o -1 -2 -3| -4| -5| -5
overcome these limitations AFSMC is used. Fig. 9.shows 2l 3 2 1 ol 1| 29 -3 4| 5| -5 -5
the block diagram representing the AFSMC controller’'s 3 4 1 ol - 2 a3 4 5| 5| 5| -5
subsystem. In Table4. fuzzy rules used in the AFSMC
controller are described. 4 1 O A} -2 3] 4-9 -5 5] 5] 5
5 0 -1 -2 -3 41 -5 -5 -5 -5 -5 -5
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3.5 ANF-SMC Architecture

In the case of the AFSMC control scheme, it is difficult
to state rules or to tune the rule-base parameters as it could
arise to tune. To overcome all these limitations of existing
controllers in our work we proposed a control scheme with
ANMF with sliding mode control named ANF-SMC to
PMBLDC motor and its sub-system. Simulink model and its
subsystem of PMBLDC implemented with
MATLAB/Simulink R2020b with Takagi Sugano fuzzy toolkit
as shown in Fig. 10.and its subsystem inFig. 11. In Table 5.
fuzzy rules of e/é used in ANF-SMC controller is described.

4. Simulation Results
In Table6.PMBLDCM Specifications were described.
Table 6. PMBLDCM Specifications

Parameters Values
Stator Phase Resistnce Rs (Ohms) 2.8750
Stator Phase Resistnce Ls (H) 8.5¢”
Back EMF Flat Area(degrees) 120
Inetia (Kg.m?) 0.08¢™
Viscous Damping (N.m.sec) 1e*
Poli Pairs 4

Flux Linkage established by magnets (V.s.) 0.175
Voltage Constant (V_peak L-L/krpm) 146,6077
Torque Constant (N.m/A_peak) 1.4

4.1 PMBLDC Motor Comparative Simulation Results of
Speed, EMT, Stator Current, and BackEMF with
Constant Speed and no load condition

411 Speed
Comparative simulation results of the ANF-SMC

controller with the other four controllers with a constant

speed of 3000RPM under no load condition with a time of 0

to 0.5 seconds are shown in the following diagram.

Simulation With these results we can infer that the

proposed controller takes very less time when compared to

other controllers which are shown in the zoomed diagram.
Simulation Results

Simulation Results of Constant Speed with No Load
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o
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Fig. 12. Comparative results under no load with fixed speed

Condition

4.1.2 EMT, Stator Current, and Back EMF

Comparative simulation results of ANF-SMC controller
with other four controllers with a constant speed of
3000RPM under no load condition with time 0 to 0.5
seconds. With these simulation results, we can infer that the
proposed controller takes a very Electro Magnetic Torque
(EMT) value of 32Nm within less time when compared to
other controllers shown in Fig. 13.

Constant Speed with No Load
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(d) ANF-SMC Controller
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Torque with No Load

L

i i 1 | i
«Electromagnetic tosque Te (N'm PI

B & B

&

Electromagnetic Torque (Nm)
w D
i

-]

O 005 01 015 02 025 03 035 04 045 05
Offsel=0 Time
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Fig. 13. Comparative Simulation results of five controllers EMT
vales with no load, constant speed condition

Comparative simulation results of ANF-SMC controller
with other four controllers with a constant speed of
3000RPM under no load condition with time 0 to 0.5
seconds. With these simulation results, we can infer that the
proposed controller takes very less stator current of 14A in
very less time, constant back EMF irrespective of the time
when compared to other controllers which are shown in Fig.
14.
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Fig. 14. Comparative Simulation results of five controllers stator
current and back EMF vales with no load, constant speed condition

4.2 PMBLDC Motor Comparative Simulation Results of
Speed, EMT, Stator Current, and BackEMF with variable
speed and no load condition
4.2.1 Speed

Comparative results of the proposed ANF-SMCwith
other four controllers with variable speeds of 3000RPM to
3300RPM under no load condition with time 0 to 1.0
seconds shown in the following Fig. 15. From these results
infer that the proposed controller takes very less time when
compared to other controllers in both the cases which were
shown from zoom1 to zoom3 diagrams.

Simulation Results of Variable Speed with No Load
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(@) No load condition with variable speed
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Simulation Results of Variable Speed with No Load
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Fig. 15. Comparative Simulation results of Variable Speed with No
Load Condition

4.2.2 EMT and Stator Current and Back EMF
Comparative simulation results of ANF-SMC controller
with other four controllers with variable speed under no load
condition with time 0 to 1.0 seconds. With these simulation
results, we can infer that the proposed controller takes a
very less Electro Magnetic Torque (EMT) value of 32Nm
with less time when compared to other controllers shown in

Fig. 16.
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Fig. 16. Comparative Simulation results of five controllers EMT
vales with no load, variable speed condition

Comparative simulation results of ANF-SMC controller
with other four controllers with variable speed under no load
condition with time 0 to 1.0 seconds. With these simulation
results, we can infer that the proposed controller takes very
less stator current of 20 in very less time, constant back
EMF irrespective of the time when compared to other
controllers which are shown in Fig. 17
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4.3.2 EMT and Stator Current and Back EMF

Comparative simulation results of ANF-SMC controller
with other four controllers with variable speed under no load
condition with time 0 to 1.0 seconds. With these simulation
results, we can infer that the proposed controller takes a
very Electro Magnetic Torque (EMT)value of 1Nm to 5Nm in
0 to 0.2 sec time when compared to other controllers shown
in the following diagram.

current and back EMF vales with no load, variable speed condition

4.3 PMBLDC Motor Comparative Simulation Results of
Speed, EMT, Stator Current, and BackEMF sudden
disturbance in speed and no load condition
4.3.1 Speed

Comparative simulation results of proposed ANF-
SMCwith other four controllers with sudden speed variation
after 0.2 seconds under no load condition with time 0 to 1.0
seconds shown in the following Fig. 18. From these results
infer that the proposed controller takes very less time when
compared to other controllers in both the cases shown in
zoom1 and zoom2 diagrams.
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Comparative simulation results of ANF-SMC controller
with other four controllers with variable speed under no load
condition with time 0 to 1.0 seconds. With these simulation
results, we can infer that the proposed controller takes very
less stator current of 4 in very less time, constant back EMF
irrespective of the time when compared to other controllers
which are shown in the following diagram.
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Fig. 20. Comparative Simulation results of five controllers stator
current and back EMF vales with no load, sudden disturbances in
speed condition

4.4 PMBLDC Motor Comparative Simulation Results of
Speed, EMT, Stator Current, and BackEMF fixed speed
and loaded condition
4.4.1 Speed

Comparative simulation results of the ANF-SMC
controller with other four controllers with a constant speed
of 3000RPM under load conditions with time 0 to 1.0
seconds shown in the following Fig. 21. From these results
infer that the proposed controller takes very less time when
compared to other controllers even under the loaded
condition which is shown in the zoomed diagram.
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Fig. 21. Comparative simulation results of fixed speed with load
condition

4.4.2 EMT and Stator Current and Back EMF

Comparative simulation results of ANF-SMC controller
with other four controllers with fixed speed of 3000RPM
under no load condition with time 0 to 1.0 seconds. With
these simulation results, we can infer that the proposed
controller takes a very Electro Magnetic Torque (EMT)
value of 5Nmin very very less time when compared to other
controllers as shown in Fig. 22.
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Fig. 22. Comparative Simulation results of five controllers EMT
vales with loaded, fixed speed condition

Comparative simulation results of ANF-SMC controller
with other four controllers with a constant speed of
3000RPM under no load condition with time 0 to 1.0
seconds. With these simulation results, we can infer that the
proposed controller takes very less stator current of 6 in
very less time, constant back EMF irrespective of the time
when compared to other controllers which are shown in the
following diagram.
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4.5Comparative Simulation Results of Membership
Function and Surface View with Five Controllers

Comparative simulation results of ANF-SMC controller
with FSMC and AFSMC controllers with sample input and
output membership functions as an error (input1) and delta
error (input2), got output membership functions and the
surface view was shown for these three controllers. These
results infer that the proposed controller shows better
results when compared to other controllers which are
shown in Fig. 24.
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4.6 Comparative Simulation Results of Measurement
Parameters with Five Controllers

Measurement parameters comparative simulation
results of ANF-SMC controller with other four controllers for
settling time, peak time, and rise time in seconds were
shown as line and bar graphs were shown in Fig. 25. From
these results infer that the proposed controller takes very
less time when compared to other controllers.
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Controllers

In Table7.comparative results of five controllers under
constant speed with load and no load, and Table 8.
comparative results of five controllers under sudden
disturbance in speed with load and variable speed with no
load were described.

Table 7. Comparative Results of Five Controllers under Constant
Speed with load and no load

Parameter Constant Speed with Load
PID SMC FSM | AFSM ANF-
C C SMC
SettlingTime | 0.200 0.008 0.006 | 0.0040 | 0.0200
Peak Time | 0.004 0.0035 0.003 | 0.0031 | 0.0030
Rise Time 0.0015 | 0.0013 0.001 | 0.0010 | 0.0005
Peak Speed | 3000 3000 3000 | 3000 3000
Overshoot% | 0.333 0.035 0 0 0
Parameter Constant Speed with No Load
PID SMC FSMC | AFS ANF-
MC SMC

SettlingTime| 0.125 0.0250 0.015 | 0.013 0.0100
Peak Time 0.035 0.0150 0.014 | 0.012 0.0100
Rise Time 0.015 0.0120 0.010 | 0.008 0.0050
Peak Speed | 3000 3000 3000 3000 3000
Overshoot% 0 0 0 0 0

Table 8. Comparative Results of Five Controllers under Sudden
Disturbance in Speed and Variable Speed under no load conditions

Parameter Sudden Disturbance in Speed with No Load
PID SMC FSM AFSM ANF-
C C SMC
Settling Time | 0.25 0.24 0.230 | 0.220 0.2100
Peak Time 0.05 0.02 0.015 0.01 0.0080
Rise Time 0.02 0.01 0.010 0.01 0.0050
Peak Speed | 3100 3000 3000 3000 3000
Set M Speed | 2750 2995 2995 2995 2990
Overshoot% | 3.333 0 0 0 0
Parameter Variable Speed with No Load
PID SMC FSMC | AFSM ANF-
C SMC
Settling Time | 0.800 | 0.7250 | 0.7200 | 0.7150 0.7100
Peak Time 0.420 | 0.4100 | 0.4080 | 0.4050 0.4000
Rise Time 0.015 | 0.0100 | 0.0100 | 0.0070 0.0050
Peak Speed | 3300 3300 3300 3300 3300
Set M Speed | 2990 3000 3000 3000 3000
Overshoot% | 10.00 0 0 0 0

5. Conclusion part of ANF-SMC

The proposed ANF-SMC controller is used to overcome
nonlinear and uncertainty problems because of dynamic
loads with the usage of PMBLDC motors in the electric
propulsion subsystem of EVs with absence, presence, and
variable speed conditions. Simulation of proposed
controller done with MATLAB/Simulink R2020b with Fuzzy
tool kit, comparative study of the proposed controller with
existing four controllers done for different speed and load
conditions, with different measurement parameters.
Simulation results infer that the proposed ANF-SMC
controller (18%, 0.1%, 0.1%) less settling, peak and rise
times respectively, (45%, 44%) less electro magnetic torque
and stator current respectively than PID, (1.2%, 0.1%,
0.1%) less settling, peak and rise times respectively, (65%,
12%) less electro magnetic torque and stator current
respectively than SMC, (0.02%, 0.01%) less peak and rise
times respectively, (50%, 10%) less electro magnetic torque
and stator current respectively than FSMC, (0.01%, 0.05%)
less peak and rise times respectively, (60%, 10%) less
electro magnetic torque and stator current respectively than
AFSMC under constant speed with no load condition,
(11.5%, 2.5%, 1.0%) less settling, peak and rise times
respectively, (50%, 25%) less electro magnetic torque and
stator current respectively than PID, (0.5%, 0.4%, 0.5%)
less peak and rise times respectively, (25%, 25%) less
electro magnetic torque and stator current respectively than
SMC, (0.25%, 0.2%, 0.3%) less settling, peak and rise
time(70%, 15%) less electro magnetic torque and stator
current respectively than FSMC respectively, (0.25%, 0.2%,
0.3%) less settling, peak and rise time respectively (25%,
25%) less electro magnetic torque and stator current
respectively than AFSMC under variable speed with no load
condition, (4.5%, 4.2%, 2.0%) less settling, peak and rise
times respectively, (14%, 1.0%) less electro magnetic
torque and stator current respectively than PID, (3.0%,
1.2%, 1.0%) less settling, peak and rise times respectively,
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(10%, 1.2%) less electro magnetic torque and stator current
respectively than SMC, (2.0%, 0.7%, 0.8%) less settling,
peak and rise times respectively, (10%, 1.2%) less electro
magnetic torque and stator current respectively than FSMC,
(1.0%, 0.2%, 0.5%) less settling, peak and rise times
respectively, (5%, 0.5%) less electro magnetic torque and
stator current respectively than AFSMC under sudden
disturbance in sudden disturbance in speed with no load
condition, (9.0%, 1.0%, 0.01%) less settling, peak and rise
times respectively, (25%, 1.5%) less electro magnetic
torque and stator current respectively than PID, (1.5%,
0.5%, 0.5%) less settling, peak and rise times respectively,
(28%, 1.8%) less electro magnetic torque and stator current
respectively than SMC, (1.0%, 0.5%, 0.5%) less settling,
peak and rise times respectively, (20%, 1.5%) less electro
magnetic torque and stator current respectively than FSMC,
(0.5%, 0.5%, 0.2%) less settling, peak and rise times
respectively, (20%, 1.5%) less electro magnetic torque and
stator current respectively than AFSMC under costant
speed with loaded condition. With 0% overshoot and a
peak speed of 3000RPM and constant back EMF
irrespective of the time when compared to other controllers
under different types of load conditions.
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