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Q-Learning algorithm for PI controller autotuning 
 

Algorytm Q-Learning do automatycznego dostrajania regulatora PI 
 
 

Abstract. This paper presents an approach for PI controller autotuning using Q-Learning algorithm. Gains obtained from Q-Learning are tested by 
simulation on the validated mathematical model of the real electric flow heater implemented in LabView and compared with conventional method for 
tuning PI controller. 
 
Streszczenie. W artykule przedstawiono podejście do autostrojenia regulatora PI z wykorzystaniem algorytmu Q-Learning. Nastawy uzyskane 
dzięki Q-Learning są testowane poprzez symulację na zweryfikowanym modelu matematycznym rzeczywistego elektrycznego podgrzewacza wody 
zaimplementowanego w LabView i porównane z konwencjonalnymi metodami strojenia regulatora PI. 
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Introduction 
Over the years, various control algorithms have been 

developed, but the most commonly used algorithm is the 
PID algorithm due to the low number of tuning parameters, 
easy implementation, and relatively low cost. Despite its 
widespread use, the PID controller has limitations in 
handling complex, nonlinear systems or processes with 
significant time delays. Advanced control techniques such 
as model predictive control (MPC) and fuzzy logic control 
have emerged to address these challenges. These modern 
control strategies offer improved performance and flexibility, 
particularly in industries with stringent control requirements 
like chemical processing and robotics. The most frequently 
used is the PI structure of the controller [1]. Although using 
derivative term enhances quality of control but for 
processes with high levels of noise the use of a PI controller 
is a better choice. Simple tuning methods are based on 
simplified models that use some kind of approximation of 
process dynamics for example FOPDT and SOPDT models 
[2]. These simplified models are obtained by processing 
response data of the process. In the industry, QDR rules are 
often applied for first order systems with dead time. 
Unfortunately these identification experiments take time and 
can cause significant bottlenecks in production not to 
mention economic aspect of conducting these experiments 
and the involvement of experts. Because of that industrial 
controllers are far from being properly tuned or operating 
with default settings. These simplified tuning methods, while 
widely used, have limitations in capturing the full complexity 
of process dynamics, especially for higher-order systems. 
Alternative approaches, such as model-based tuning or 
adaptive control strategies, can potentially offer more 
precise and robust control for complex industrial processes. 
However, the implementation of these advanced techniques 
frequently requires specialized knowledge and resources, 
which may not always be readily available in industrial 
circumstances. In result of that process control performance 
decreases which can lead to increase of energy 
consumption and production efficiency. In this paper, Q-
learning algorithm is proposed for autotuning PI controller. 
Different applications of Q-learning in process control have 
been proposed. Musial et al.[3], propose to use Q- learning 
as self-improving controller and in [4] implementation 
aspects of Q-learning controller. Lam et al. [5] proposed an 
adaptive proportional-integral-derivative controller based on 
Q-learning algorithm to balance the cart-pole system. 
Syafiie et al. [6]. implementation of Q-learning algorithm for 
neutralisation control. This work was important in terms of 

applying this methodology to continuous systems. 
Examples of implementation of Q-learning can be found in 
robotics and avionics [7]. 

 
Q-learning: A brief overview 

Machine learning has a wide range of applications from 

the very general to the very specific [9, 10]. Q-learning is 

a model-free reinforcement learning algorithm widely used 

in machine learning [11] and optimisation problems. It is 

based on trial and error learning. Algorithm revolves around 

the reward/punishment policy which provides optimal 

solution even for dynamical problems for which accurate 

model is unknown. The problem can be defined as agent 

(controller) and environment (plant) interaction shown in 

figure 1. 

 
Fig. 1. Schematic diagram of Q-learning algorithm [10]. 

 

Q-learning learns directly from this interaction. The Q-

learning algorithm is an off-policy value-based learning 

algorithm. The learned action value function Q, directly 

approximates the optimal action-value. In general policy can 

be described as iterative formula using equation (1): 

(1) 

Q
π
(st,at)←Q

π
(st,at)     

+ αt [rt+1+ γ max
bϵAst+1

Q
π
(st+1,b) – Q

π
(st,at)] 

 
Where t is discrete time, s and a respectively denote state 
and action that should be taken at a given state, Q(s,a) is 
the value of Q-matrix that represents reward for taking 
action a when the system is in the states. In Equation (1), 
Qπ(st,at) is the value before update, Q(st+1,at+1) is the state 
to which the system will move from Q(st,at), α [0,1] is the 
learning rate, γ [0,1] is the discount factor. Parameters α 
and γ are considered as tuning parameters of Q-learning 
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algorithm. Reward R is assigned if the system is at the goal 
state or not. In this implementation if the goal state is 
reached then R = 1 is applied otherwise R = -1. Random 
actions are taken to force exploration and check if actions 
taken so far can be considered as optimal should be 
updated. In case of reinforcement learning general scenario 
follows these procedures shown in figure 2: 
 

Fig. 2. Schematic diagram of Q-learning algorithm.  
 
Electric flow heater 

In order to test and verify gains of PI controller obtained 
from Q-learning algorithm mathematical model of the real 
electric flow heater was used shown in figure 3.  

 

 
 

Fig. 3. Picture of the electric flow heater. 
 

Water flows through the heater with the flow F1 [L/min] 
and inlet temperature TIN [℃]. The power supply PH [%] can 
be manipulated in range from 0-100 [%], nominal power 
PNOM of the heater is equal to 12 [kW]. Hot water flows out 

with the same flow and the outlet temperature TOUT [℃]. The 
volume of the heating chamber is constant and equals  V = 
1.6 [L]. Model was derived on the balance of mass and flow 
based on the article [2]. T 

 

(2)       
dTOUT(t)

dt
 = 

F1(t)

60∙V
∙(TIN(t)-TOUT(t))+

PNOM∙Ph(t-T0)

100∙V∙ρ∙cw
 

 

where : cw– specific heat capacity J/kg℃, ρ – density, kg/l, 
T0 – dead time.  
 

In order to simulate dynamics of the equation (2) 
Numerical method was used with sampling period h = 1 [s]. 
Before tuning PI controller using QDR rules it is necessary 
to approximate important process parameters such as : 

 

(3)    𝑇0 = 0.1 ∙ 𝑇,  s 

 

(4)     T   = 60∙V
F1(t)

 ,  s, 

(5)      k = Δy
Δu

,  
℃

%
 

Where (4) is time constant expressed in seconds and (5) is 

process gain. Both parameters are dependent on flow 𝐹1(𝑡). 
Simulation experiment was conducted to obtain these 
parameters. During the initial experiment flow F1 was equal 
to 2 [L/min] and power supply was set to 50% of the 
nominal power. Inlet temperature TIN is set in the simulator 
to 15 [℃]. Dynamics of the plant are shown in figure 4. 

Fig. 4. Time response of the plant. 

 
Using equations (3), (4) and (5), it is possible to estimate 
parameters of the plant. Dead time is equal to 5 [s], process 

gain is equal to 0,8335 [℃/%] and time constant equals 51 
[s]. 
 
Control system 

In control theory control performance of the closed loop 
system usually is evaluated by control error e = Ysp – Y and 
other indexes such as maximum overshoot, settling time or 
control signal trajectory. The last one is particularly impor-
tant because oscillatory behaviour of control signal can be 
the reason of damaging process instrumentation and it is 
unwanted  A simple way to tune PI parameters is based on 
step response of the system using FO (first-order) model. 
Equation (6) provides the output of the controller in discrete 
time form : 

(6)    U(i)=K
R
∙ (e(i)+

1

TI
∙ ∑ e(i)∙hi=∞

i=0 ) 

 
Where: KR – proportional gain, TI – integration time, e(i) 

– control error, U(i) – control signal, h – sampling period. In 
order for control loop working as intended sampling period 
of controller must be the same as sampling period of 
simulator of the heating unit.  

 
Statement of the problem 

Because of poorly tuned control systems it is necessary 
to implement autotuning for industrial controllers for 
example algorithms based on reinforcement learning. As a 
novelty, this paper proposes a Q-learning algorithm 
modified in such a way that it is able to automatically tune 
the PI controller applied for control of the heating unit. The 
control goal is to keep process output Y (in this case TOUT ) 
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equal to the desired setpoint TSP by adjusting manipulating 
variable Ph in the presence of disturbance d. The problem of 
accurate tuning is time-consuming and over time properties 
of the system can change. It is possible to distinguish two 
major causes. One is change of operating point - this is fast 
change. Second one is the aging of the system 
instrumentation for example sediment on the heating unit. In 
this case process can be disturbed by a poorly tuned flow 
control system as mentioned before time constant (3) and 
process gain (4) are dependent on flow therefore any 
change of flow implies a change in the system dynamics. A 
schematic diagram of the proposed control system with Q-
learning is shown in figure 5  

Fig. 5. Diagram of proposed control system with Q-learning. 
 

Goal state is defined as S = (|TOUT| ≤ TSP +/- 0.1 · TSP). 
But this does not ensure good control performance because 
over-regulations and oscillations can occur in transient 
states to prevent this situation reward function was modified 
so that not only one sample is taken into the condition of 
reward function but number of next samples. In general 
reward function is defined as equation (7) below: 

 

(7)     R = {
 1 ,  |𝑇𝑂𝑈𝑇| ≤ 𝑇𝑆𝑃+/- 0.1 · 𝑇𝑆𝑃

-1,                             otherwise
 

 
Potential implementation of suggested approach was 

tested by simulation for two examples. One for PI controller 
tuned with QDR method and one autotuned with Q-learning. 

 
Simulations results 

Both simulation experiments were conducted in the 
same way meaning: power supply is turned off, flow F1(t) is 
set to 2 [L/min] and inlet temperature is set to 15 [℃] all 
these inputs are set in the simulator. Setpoint is set to 45 
[℃]. After setting these values controller was switched to 
automatic mode thus power supply turns on to minimize 
control error.  

It is possible that during learning phase algorithm can 
reach constraints of the control signal. In order to avoid this 
situation algorithm lowers the value of KR when the control 
signal saturates. 

Before autotuning PI controller gains were initialized as 
follows: KR = 0.5, TI = 20 [s]. These gains are also initial 
conditions from which algorithm will start learning. Gains 
obtained using the QDR method: KR = 3.8, TI = 46.9 [s]. 
These gains are the reference to compare performance 
between conventional and known tuning methods and auto-
tuning with Q-learning. In order for algorithm to learn and 
tune controller it was necessary to define two intervals for 
PI parameters. One for KR (8) and one for TI (9). 

(8)    KR∈ [0.5, 0.7, ... , 4.3,  4.5], 

(9)    TI∈ [20, 20.2, ... , 59.8,  60]. 

 

Instead of exploring through entire intervals algorithm 
chooses values of KR  and TI  which are close to current 
values. Therefore three actions can be defined as :  

• Increase value  

• Stay at the current value 

• Decrease value 

Increasing or decreasing value means changing current 

table index by 1 or -1 this is equivalent to increasing or 

decreasing values of KR and TI by 0.2. Values of KR and TI 

are changed at the same time meaning if increase or 

decrease action is selected then both values are changed. 

This approach introduces local exploring, this also prevents 

jumps between values. Gives algorithm a chance to stop at 

the current values if it decides that these values are optimal. 

It also improves optimization process, because it avoids 

unnecessary changes. States in this study are defined as 

current values of KR  and TI. The Q values are typically 

initialized as zeros or for example are based on the 

controller in operation [1], [5]. Other and often effective way 

for some environments might benefit from a small random 

start value to encourage initial exploration [11]. In this study 

of Q-learning the Q matrix is initialized with zeros because 

algorithm has no knowledge about process at the beginning 

[12]. During learning process Q-matrix stores Q-values for 

sets of KR and TI. In this implementation optimal values of 

KR and TI are chosen for the maximum value in the matrix Q. 

If the state of the process is not a goal state some action 

(increase the value, decrease the value, do not change the 

value) must be taken by the algorithm. At the beginning this 

action is random because Q-matrix stores zeros. After 

taking a random action Q-matrix is modified meaning that 

agent was rewarded or punished for this action. The 

procedure is repeated until the goal state is reached, this is 

one episode of learning. It is also crucial to briefly describe 

exploration and exploitation phases. Exploration means that 

the algorithm takes an action, therefore checking new 

combinations of control parameters. Exploration is crucial in 

the early stages of learning where the agent has to adapt to 

changes. During the exploitation phase algorithm focuses 

on utilizing known information to make decisions that yield 

the highest reward according to the policy. Proposed 

algorithm follows procedures shown in figure 6. 

 

 

Fig. 6.  Schematic diagram of proposed algorithm. 

 
It is also important to mention three important 

parameters: learning rate α , discount factor γ and 
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probability ε. Learning rate determines to what extent newly 

acquired information overrides old information. Learning rate 

equal to 0 makes agent learn from only prior knowledge 

while learning factor equal to 1 makes agent learn from the 

most recent data ignoring prior knowledge to explore 

possibilities. Probability ε helps the agent decide which 

action to take based on the current Q-values. 

Value of learning rate is dependent on environment and 

problem. The discount factor γ determines the importance of 

future reward. Discount factor of 0 will make the agent 

consider only current rewards while a factor closer to 1 will 

make the agent to aim for long term high reward. 

Unfortunately there are no deterministic methods on how to 

optimally tune Q-learning algorithm. Therefore the values 

are based on gradual learning and long term 

reinforcement [6]. The influence of parameters on control 

performance was tested for three different values and is 

presented in figure 7. 

 
Fig. 7. The influence of parameters on control performance. 

 

The most significant impact on control performance has γ 

parameter. For γ = 0.1 control performance deteriorated 

very quickly – settling time is much longer this could mean 

that the learning process is slower. This means that low 

values of γ are not desirable. Learning rate α also impacts 

control performance but not as drastically as discount factor 

γ. All these parameters influence learning process in 

a different way because of that for further experiments the 

parameters in Q-learning are designed as follows: 

α = 0.4, γ =  0.95. The ε-greedy policy with the probability ε 

= 0.3 is utilized. Learning process for 50 episodes is shown 

in figure 8. 

 
Fig. 8. The update process of control parameters for 50 episodes.  

 

It is significant that to point out that the proposed tuning 

method tries to increase and decrease the initial values of 

KR and TI before 10-th episode. Algorithm then learned that 

the lower values KR and TI of mean worst performance. 

Optimization process of TI values is stable and the value of 

TI increases. After 46 learning periods values settle and 

remain constant until the end of simulation. In total three 

sets of parameters were obtained from Q-learning algorithm 

each set for different number of episodes. Parameters 

shown in table 1.  

Table 1. Parameters of the PI controller 

Lp. KR TI, s 

QDR 3.8 46.9  

Initial tuning (episode = 0) 0.5 20 

50 episodes 1.3 41,2 

500 episodes 4,1 45,2 

5000 episodes 2,5 43 

 
Using modified IAE performance index with weights 
equation (10) comparison of obtained gains was conducted. 
The change of modified IAE performance index for twelve 
number of learning periods is presented in figure 9. 
 

(10)   IAE = w1  ∙ ∑ 𝑒(𝑖)2 + w2
𝑖=𝑁
𝑖=0 ∙ ∑ ∆𝑢(𝑖)2𝑖=𝑁

𝑖=0  

 
where: e(i) – control error, ∆𝑢(𝑖) – control signal difference, 
w1 = 1, w2 = 0.5 – weights.  

 
Fig. 9. The change of performance index in function of number of 

episodes. 

 
For initial tuning modified IAE index is the highest meant 

the control performance is optimally tuned and needs to be 
improved. Increasing number of learning episodes improves 
control performance as index decreases. After 5000 
episodes performance index is lower than index for QDR 
method this shows that Q-learning can be used for auto-
tuning controllers and produce better results in comparison 
to conventional methods. Figures 10 and 11 present 
trajectories o process variable TOUT and manipulated 
variable Ph for optimized parameters for 50, 500, 5000 
episodes, QDR method and initial tunings. 

 
Fig. 10. Process variable TOUT trajectory. 
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Fig. 11. Manipulated variable Ph trajectory. 

 
Control performance gradually increases with number of 

learning episodes. Overshoot of 5.4% is present for initial 
tuning. For 500 episodes process variable trajectory is 
almost equivalent to trajectory obtained from QDR method. 
Trajectories for 50 and 500 episodes can be also deemed 
satisfactory as there is no overshoot and learning time is 
much shorter compared to 5000 episodes. It is also 
important to mention disturbance rejection for Q-learning 
algorithm. Disturbance rejection is presented in figure 12. 

 
Fig. 12. Process variable TOUT under process disturbance d. 

 
Step changes of disturbance were made in steady state. 

The amplitude of disturbance is equal to 0.2. The 
disturbance was present for 400 [s]. Under process 
disturbance Q-learning also has advantage over 
conventional tuning method settling times are similar but the 
overshoot after step change of the process disturbance is 

lower for Q-learning. This fact works in favour of Q-learning 
for autotuning industrial controllers. Q-learning algorithm 
showed that for step changes of setpoint and process 
disturbance can yield better results than conventional tuning 
methods. 

 
Conclusions 

In this paper, it was shown that Q-learning algorithm can 
be effectively used for autotuning PI controller applied in 
industrial control loops. The performance of the autotuning 
of the PI controller was tested on model of the heating unit 
with comparison of conventional method of tuning industrial 
controllers. According to the simulation results Q-learning 
algorithm was able to stabilize outlet temperature even for 
low number of episodes with no overshoot this could mean 
that reward function properly defined and implemented. 
Another aspect is that the autotuning was performed under 
disturbance which present in real systems this means that 
Q-learning algorithm has adaptive properties.  
This property can be used for example to help with tuning 
controllers with gain-scheduling. 

However there are some drawbacks of autotuning 
controllers using Q-learning algorithm. First of all Q-learning 
algorithm is limited due to relatively long time required for 
effective learning for faster processes algorithm is not able 
to follow. Second of all further research should be 
conducted for adjusting parameters of Q- learning 
algorithm. On real systems process of autotuning can be 
performed. The advantage of that is the reflection of real 
operating conditions but it can be much more time-
consuming. The most noticeable difference with existing 
tuning methods and Q-learning based tuning method is that 
the proposed Q-learning tuning method is model-free and 
data-driven which is capable of optimizing the controller 
parameters despite disturbance and complicated physical 
models. 
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