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Application of higher-order disturbance observer in  
the control structure of the two-mass system 

 

Zastosowanie obserwatora zakłóceń wysokiego rzędu w strukturze sterowania układu dwumasowego 

 
Abstract: The article presents issues related to vibration damping in a dual-mass system. A control structure with a PI controller and with additional 
feedback from the torsional torque and its derivative is used for the study. A higher-order integral estimator is proposed to obtain information on 
these variables. Results showing a significant improvement in the quality of estimation of these quantities compared to the classical observer are 
presented. Theoretical considerations are confirmed by simulation and experimental studies. 

 
Streszczenie: W artykule przedstawiono zagadnienia związane z tłumieniem drgań w układzie dwumasowym. Do badań wykorzystano strukturę 
sterowania z regulatorem PI i z dodatkowym sprzężeniem zwrotnym od momentu skrętnego i jego pochodnej. W celu uzyskania informacji o tych 
zmiennych zaproponowano estymator całkowy wyższego rzędu. Przedstawiono wyniki ukazujących znaczną poprawę jakości estymacji tych 
wielkości w porównaniu z klasycznym obserwatorem. Rozważania teoretyczne potwierdzono przez badania symulacyjne i eksperymentalne. 
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Introduction 
When implementing advanced control structures, it is 

necessary to know the state variables of the drive system 
[1] - [7] . These variables are speed, position, load, current 
and others. Some of them are easy and cheap to obtain, 
others, on the contrary. The speed of the drive can be 
obtained easily using an encoder or resolver. However, the 
measurement of torques can be complicated (torsional) or 
sometimes even impossible (load). Currently, standard 
drive systems very often rely only on voltage and current 
sensors, leaving the others aside. A flexible coupling drive 
system is usually assumed to have a speed sensor [9] - [18] 
. For better control quality, various feedback can be used, 
especially torsional torque and its derivative.  

Since this variable is hard to obtain, it can be estimated. 
Several methods for estimating state variables are 
mentioned in the literature. Among the simplest of these is 
the disturbance observer [12] . It determines the torsional 
torque based on the driving motor torque and speed. In its 
classical form, it is sensitive to measurement noise, 
especially in the speed signal. To reproduce the entire state 
vector, a Luenberger observer is very often used [18] [19] . 
This system is characterised by its relative simplicity of 
design. The fundamental problem is the correct choice of 
correction coefficients to ensure that the poles of the closed 
system are appropriately localised. A sliding observer is 
recommended for a system in which the parameters are not 
precisely known or there are other disturbances [18] . It 
provides better quality estimation of the state variables 
compared to the classical solution. For systems with a high 
level of measurement noise, a Kalman filter is 
recommended [20] . Information on state variables is 
necessary to implement advanced control structures [1] - [6]  
For a dual-mass system, these are usually based on 
unavailable torque and speed signals. In practical 
applications, the torsional torque and load speed are 
provided by means of estimators. 

The paper [13] presents a new control structure with a 
PI controller and with additional couplings from the torsional 
torque and its derivative. It provides an arbitrary pole 
location of the closed-loop system. It thus represents an 
interesting alternative to the standard control structure, also 

based on feedback from the speed of the working machine. 
This structure is considered in the paper. 

The main goal of the paper is to design a couple of high-
order disturbance observers. Classical disturbance 
observers are sensitive to measurement noise. For this 
reason, integral observers are designed in this work. 
Analytical relationships are derived that allow for an 
arbitrary distribution of the observer poles. The influence of 
design parameters on the quality of variable estimation by 
observers is analysed. Simulation studies are confirmed by 
laboratory bench tests. In the paper, this kind of observer is 
also used, but tuning is performed with the help of a 
metaheuristic algorithm. 

In this paper, we compare the usefulness of such a 
high-order observer for disturbance torque and its first 
derivative estimation with the more basic structure of an 
observer for disturbance torque estimation and the classical 
approach. The simulation results are backed by 
experimental verification. The pole placement equations for 
the considered systems are presented along with diagrams 
of the systems. A numerical simulation comparison is 
presented. Both simulation and experiments show smaller 
noise and better accuracy in obtained estimated variable 
value. 

 
Mathematical model of the two-mass system and the 
control structure 

The subject of the study is a drive system with an elastic 
connection. It consists of concentrated masses of motor 
and load distributed at the ends of an elastic shaft. A model 
of a mechanical system with an inertial elastic connection, 
commonly used in many works in this field [9] - [13] , is 
adopted for consideration. The object under study is 
described by the following equations (in relative units): 
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where: ω1, ω2 – the speeds of motor and load side 
respectively, me, ms, mL – the electromagnetic, torsional, and 
load torques, T1, T2 – the mechanical time constant of the 
motor and load side, Tc – the parameter which represents 
the elasticity of the coupling 

In Fig. 1, the block diagram of the dual-mass system is 
presented: 
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Fig. 1. Block diagram of the two-mass system 
 

A schematic diagram of the control system is 
demonstrated in Fig. 2. It consists of the following parts: a 
two-mass system, a driving torque control loop, a PI-type 
speed controller, and additional feedback from the torsional 
torque (k1) and its derivative (k4). The designation of 
additional couplings is [17] . 

The RRC's control structure is built on the same 
coupling from the torsion torque [12] . However, it is based 
on a different approach to obtaining the correct value of the 
resonant to anti-resonant frequency. In order to place the 
poles of the circuit at arbitrary locations and thus obtain 
arbitrary variable waveforms in the linear operating range, it 
is necessary to introduce two additional couplings from 
different quantities into the circuit with the PI controller. As 
can be seen from [17] , couplings from two other groups 
should be used. Particularly popular is a system with 
additional coupling from torsional torque and speed 
difference. 
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Fig. 2. Block diagram of the control system 
 

The control system coefficients (with the assumption 
that the optimized transfer function of the electromagnetic-
torque control loop is equal to 1) are selected using the 
following relationships [17] : 
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where: ω – the desired frequency of the system poles 
(closed-loop), ζ – damping coefficient, k1, k2, KI, KP – 
coefficients of the control structure.  

The above relationships are determined using the poles 
placement methodology. The PI controller has the following 
form: 
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Formulas (4)-(7) allow shifting poles of the system to 

any desired location in the complex plane. So, the dynamics 
of the system can be set freely in the linear range of the 
operation. This control structure requires information about 
the torsional torque and its derivative. As it is usually 
impossible to measure these quantities, it is necessary to 
use suitable estimators.  

 

Disturbance observers 
The disturbance observer for a two-mass system is 

based on equation (1). The main disadvantage of 
simulators is sensitivity to initial states and disturbances. 
However, it should be emphasised that in the applications 
under discussion, there are no integrators or disturbances 
(in the simulator structure). Thus, the aforementioned 
drawbacks are not present in the system under 
consideration. A block diagram of the classical disturbance 
observer is shown in Fig. 3a. In practice, the system of Fig. 
3b, in which direct differentiation is dispensed with, is often 
used. 
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Fig. 3. Block diagram of the classical disturbance observer in direct 
(a) and transformed (b) form 

 
The properties of the observers depend on the 

measurement noise levels in the real system, especially in 
the speed signal. This is due to the presence of a 
differentiating term in its structure. High levels of noise 
adversely affect the shape of the disturbance torque 
estimate. To minimise them, a first-order low-pass filter is 
introduced into the system. The filter time constant 1/a 
depends on the noise level in the particular case. It reduces 
the noise content, but introduces a delay into the estimated 
signal. 

The disturbance torque can also be determined using 
the theory of observers. The driving torque me is an input 
signal, and the motor speed ω1 is an output quantity. The 
block diagram of the integral disturbance observer is shown 
in Fig. 4. 
 

1/s 1/sT1

md

me

1e

h2 h1

1

 
Fig. 4 Block diagram of the reduced observer for disturbance 
torque estimation 
Where h1, h2 – are coefficients calculated in (10) and (11); md – 
disturbance torque (here load); me – electromagnetic torque; ω1, 
ω1e – motor speed: measured and estimated. 
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The poles placement methodology is applied to 
determine the observer coefficients. In order to distinguish 
between control structure and observers, the following 
description is introduced. The resonant pulsation of the 
poles is p, and the damping coefficient is a. The desired 
polynomial and resulting correction gains have the following 
forms: 
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The system is designed with the help of the poles 

placement methodology. The desired polynomial has the 
following equation: 
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By comparing the chosen forms of the desired 

polynomials to the system's characteristic equations, a set 
of observer coefficients is obtained: 
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The presented relationships allow the placement of the 
system poles at arbitrary positions on the complex plane. 
Their precise location is a trade-off between observer speed 
and measurement noise amplification. 
 

In order to reproduce the torque derivative, it is 
necessary to extend the observer structure with an 
additional segment, as shown in Fig. 5.  
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Fig. 5 Block diagram of the reduced observer for disturbance 
torque and its first derivative estimation 
 

Simulation study 
In this chapter, we present simulation outcomes. Fig. 6. 

a-c shows speed transients for three analysed estimation 
systems. The first system (a) is a low-pass filter solution. 
Subfigure (b) presents the case of an observer of 
disturbance torque, and subfigure (c) uses an observer of 
disturbance torque and its derivative. 

The measured motor speed (black Fig.6 a-c) is fed both 
to the controller and observer. As it is seen, cases a & c 
look practically identical, the differences get lost in the 
noise, case b contains slightly bigger return oscillations 
after load application. 

However, moving towards subfigures d-f, the torsional 
torque estimated by the considered system and the signal 
of torsional torque taken from the model are presented. 

Here, we see that the integral observers are much less 
noisy and offer much lower delay. This delay can be further 
improved by tuning the observer towards a specific setup. 
The subfigures g and h offer a comparison between 
electromagnetic and torsional torques (from the model).  

For further comparison of the analysed systems, the 
following function was used to assess the quality of the 
estimation: 
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where: J – quality index, msi – sample of real value of the 
shaft torque, msei – sample of estimated value of the shaft 
torque. 

The parameters of the tested observers are determined 
as follows. The entire possible solution space is searched, 
and in this way, the coefficients providing the smallest value 
of the objective function are determined. A damping factor 
of integral observer poles is assumed to be a=1. Only the 
value of the resonant pulsation p is changed. The error 
values are included in Table 1. The input waveforms are 
presented in Figure 6. a-c for the case of ω=30. The 
obtained integrated squared error values are included in 
Table 1. For comparison, percentages are included in the 
second row. The reference quantity is the classical 
estimator (Fig. 3).  
 
Table 1. Absolute and relative error values 

 System 1 System 2 System 3 

ISE(ms-md) 

ω=30 48.3214 17.6364 9.4143 
  100% 36.5% 19.48% 

 
The data in Table 1 allow the following conclusions. The 

system with a classical interference observer (system 1) 
has the highest error value and provides a reference point 
for subsequent systems. The simplest integral observer 
decreases error values by up to 74% (system 2) and lowers 
noise. Extending its structure to include an integrator that 
estimates the first derivative substantially reduces 
estimation errors (system 3) and noise. 

Fig. 6 d-f shows fragments from the actual torsional 
torque waveforms. Also shown are the estimated variables 
by each system. Analysis of the posted waveforms confirms 
the conclusions of the error study. The system with the 
classical solution provides the worst dynamic properties. 
The estimated waveforms show a high noise level and a 
delay to the real waveform. The use of a first-order integral 
observer reduces the visible oscillations. However, the lag 
in the estimate is still apparent. Using a higher-order 
observer results in both a low noise level and a significant 
reduction in lag. In some moments, the estimate is even 
ahead of the actual waveform. It is important to mention, 
even worst of this solution provides great performance, the 
slight differences are seen in the numeric comparison 
(Table 1.) and during torque estimation (Fig. 6. d-f). But 
what is important this small gain is obtained at almost no 
numerical cost. 

The subfigure system 1 was presented in subfigures a & 
d, also as colour red in subfigures g &h. Similarly, system 2 
is b, e and green and system 3 is c, f and light blue. 
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Fig. 6. Transients of measured motor speed (ω1 meas black), actual motor speed (green) and load speed (blue) for the control system with 1st 
observer (a), 2nd observer (b) and 3rd observer (c). Real (black) and estimated (colour) torsional torque for the 1st (d), 2nd (e) and 3rd (f) 
systems. Electromagnetic torque (g) and torsional torque (h) for the case of 1st system (black), 2nd system (blue) and 3rd system (red) for 
the case of ζ=1.0, ω=30 and p=90. Colours in subfigures d-f and g-h correspond. Red – 1st system, green 2nd, and blue – 3rd.  

 
Experimental study 

To confirm theoretical considerations and simulation 
studies, bench tests are performed. The test stand (Fig.11) 
consists of two DC motors connected by a long shaft. The 
drive motor is fed from a converter with an H-bridge 
configuration controlled with PWM signal. Both motors are 
excited using a rectifier. The load is applied by modulating a 
transistor to a braking resistor. The control algorithm is 
implemented on a dSpace 1103 control board. The system 
includes two encoders mounted on two machines. The first 
(motor) signal is used in the control. The second (load)is 
used to evaluate the correctness of the working machine. 
The driving torque is proportional to the measured armature 
current signal. 

A number of experimental tests were performed. Figs. 7-
10 show the recorded waveforms of motor and working 
machine speeds and driving and torsional torques. They 
confirm the conclusions of theoretical considerations and 
simulation studies. 

On the right side of each figure 7-10 the longer 
observation period have been shown, and on the left the 
zoom of chosen time period is presented. The experimental 
transients follow simulation results. Except for torsional 
torque, which is unable to be measured using our 
equipment, instead we show ω1-ω2, which is a direct result 
of torsional torque. 
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Fig. 7. Experimental transient of drive and load speed for 1st system (blue), 2nd system (green), 3rd system (red), and reference speed. For 
the case of ζ=1.0, ω=30. 

 
Fig. 8. Experimental transient of difference between drive and load speed for 1st system (blue), 2nd system (green), 3rd system (red), and 
reference speed. 

 
Fig. 9. Experimental transient of measured electromagnetic torque for 1st system (blue), 2nd system (green), 3rd system (red), and reference 
speed. 

 
Fig. 10. Experimental transient of reference electromagnetic torque for 1st system (blue), 2nd system (green), 3rd system (red), and 
reference speed. 

 

 
Fig. 11. Photo of experimental setup 

Conclusions 
The article presents issues related to estimating the 

disturbing torque in the control structure of the dual-mass 
system. The main objective of the research is to design and 
evaluate integral observers. Based on the work carried out, 
the following summary conclusions can be specified. 

- Disturbance observers are commonly used in 
mechatronic systems. Most often, they include direct 
differentiation of the velocity signal. This is the classical 
solution. These observers are characterised by a high level 
of measurement noise depending on the quality of the 
available speed sensor. Low-pass filters are used to reduce 
this, which causes a delay in the estimated torque signal. 

- The integral observer of disturbance torque provides a 
significant reduction of noise in the estimated signal. 
However, there is a visible delay in the system (as seen in 
system 1, especially simulation – fig. 6d). As in the classical 
solution, it is a compromise between the dynamics of the 
system and the amplification of measurement noise. 

- The use of the higher-order integral observers 
described in the paper improves the quality of state variable 
estimation. The delay in estimation is almost completely 
eliminated (as seen in system 3, second-order integral 
observer, fig. 6f). This system provides the smallest value of 
the quality index. It decreases almost three times compared 
to the classical solution. 

The disturbance observer needs only the system 
parameter associated with the drive motor in its structure. 
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This means that it is immune to changes in parameters 
related to the shaft and the working machine. Some other 
observers are also based on load parameters, which makes 
them more dependent on overall system parameter 
knowledge. 
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