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Introduction
Lithium ‑ion batteries are a key energy source for electric 

vehicles (EVs) due to their high energy density, long life span, 
and ability to operate in a wide range of temperatures [1, 2]. 
As the adoption of EVs continues to grow globally, optimizing 
battery performance and safety has become a critical area 
of research. However, lithium ‑ion batteries exhibit nonlinear 
behavior influenced by aging and operational conditions, ne‑
cessitating a robust battery management system (BMS) to 
ensure their safe and reliable operation [3].

Accurate state of charge (SOC) estimation is fundamen‑
tal in maintaining battery health, as it prevents overcharging 
and deep discharging, which can significantly degrade bat‑
tery performance and reduce the vehicle’s range. Traditional 
model ‑based SOC estimation methods require precise bat‑
tery models and extensive parameter tuning, which can be 
challenging to implement in real ‑world scenarios. Machine 
learning (ML) method, particularly deep learning (DL), offer 
a promising alternative by leveraging large datasets to im‑
prove accuracy without relying on complex battery models [4].

Among DL techniques, long short ‑term memory (LSTM) 
networks [5] have been widely adopted for SOC estimation 
due to their ability to capture long ‑term dependencies in time‑
 ‑series data. Earlier studies have demonstrated their effec‑
tiveness, achieving SOC estimation errors as low as 0.6% 
under stable conditions and around 1.6% in variable environ‑
ments [6]. However, LSTMs face challenges in retaining long‑
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Fig. 1. The Internal structure of a single LSTM cell

 ‑term dependencies over extended time horizons. This limi‑
tation can be addressed by employing Bidirectional LSTMs 
(Bi ‑LSTMs), which process data in both forward and back‑
ward directions, enhancing temporal context [7]. Moreover, 
the integration of attention mechanisms further improves per‑
formance by enabling models to focus on the most relevant 
time steps, particularly in variable operating conditions [8].
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This study contributes to the field by proposing a bidirec‑
tional LSTM model with an attention mechanism (Bi ‑LSTM‑
 ‑AM) to improve SOC estimation accuracy under different 
temperature conditions. The proposed approach advances 
the theoretical understanding of DL ‑based SOC estimation 
and provides a practical tool for enhancing BMS performance 
in EVs as it aims to design and evaluate a Bi ‑LSTM ‑AM mod‑
el to address the challenges of SOC estimation in varying 
thermal conditions, providing insights into its potential ap‑
plications for real ‑world EV battery management systems.

The remainder of the paper is organized as follows: sec‑
tion 2 details the methodology, section 3 presents the dataset 
and discusses estimation results, and section 4 concludes 
with key findings and future research directions.

An LSTM cell has three gates: forget, input, and output, 
which help the network learn longer sequences and manage 
dependencies [11]. The input gate updates the cell state, the 
forget gate decides whether to retain the previous state, and 
the output gate passes the hidden state to the next iteration. 
The current cell state is calculated by multiplying the previous 
state by the forget gate and adding the input gate’s new input. 
The process at time step t is illustrated as follows:

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Where the weight parameters of the input layer and the hid‑
den layers are presented in equations (9) and (10) respective‑
ly and bias parameters are shown in equation (11) as follows;

(9) 

(10) 

(11) 

Bidirectional long short ‑term memory network
Traditional RNN and LSTM networks are unidirectional, 

capturing only past input sequences. However, many real‑
 ‑world scenarios require considering both past and future 
data [10]. Custer and Paliwal [7] addressed this by introdu‑
cing the bidirectional recurrent neural network (BRNN), which 
computes output in both forward and backward directions. 
The bidirectional LSTM (Bi ‑LSTM) extends this by incorpo‑
rating LSTM’s ability to handle gradient issues while proces‑
sing sequences bidirectionally. Though the same input is fed 
to forward and backward last networks, they operate inde‑
pendently, with no shared state information [12].

Forward ( ) and backward ( ) LSTM hidden states 
are calculated simultaneously at each time step t as follows 
where Z (•) indicates the LSTM operations described in equa‑
tions (1)–(8);

Fig. 2. The Bi ‑LSTM network

Proposed Method
In this study, a Bi ‑LSTM ‑AM is proposed for SOC estima‑

tion of lithium ‑iron phosphate (LFP) batteries under varying 
temperature conditions. The model is trained and tested at 
three distinct temperature levels: cold (0°C), ambient (25°C), 
and hot (50°C), with the objective of examining the influence 
of temperature variations on SOC estimation in complex ope‑
rational environments.

To address existing gaps in research, the integration of 
an attention mechanism is introduced to optimize SOC pre‑
dictions under diverse thermal conditions, leading to more 
accurate and reliable results. The training datasets used in 
this study are sourced from battery dynamic tests conducted 
under the US06 test driving cycles. This enables a compre‑
hensive assessment of the model’s robustness, generaliza‑
tion capability, and learning accuracy.

Long short ‑term memory network
Long short ‑term memory, a variant of recurrent neural 

networks (RNNs) [9], addresses the vanishing and explod‑
ing gradient problem of traditional RNNs by introducing long‑
 ‑term memory units, known as cell states, into the standard 
hidden nodes.

These cell states retain information from previous LSTM 
cells and carry it forward to subsequent cells, while being con‑
tinuously updated with new information as it becomes avail‑
able. This mechanism allows LSTM networks to learn long‑
 ‑term dependencies effectively during the back ‑propagation 
process [5, 10]. Figure 1 is an illustration of a single LSTM 
cell.
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(12) 

(13) 

Attention ‑based bidirectional long short ‑term memory 
network

The attention mechanism, introduced by Vaswani et al. [8], 
addresses the challenges of handling long input sequences in 
encoder ‑decoder models and improving machine translation 
accuracy. In the Bi ‑LSTM model, attention is added during pre‑
diction to assign higher weights to important features [11]. This 
allows the network to focus on relevant outputs from previous 
layers, enhancing performance [13, 14]. Since time series data 
often involves irregular intervals and patterns, attention dy‑
namically adjusts the importance of distant time steps based 
on context, helping the model to erratic trends. The structure 
of the proposed Bi ‑LSTM ‑AM model is shown in Figure 3.

Equations 14 and 15 demonstrate the computation process 
of the final output yi that is indicated by the vector Mi which 
represents a weighted sum of hidden states and is given by;

(14) 

(15) 

Where eij denotes the output score of a feed ‑forward neu‑
ral network

While the Bi ‑LSTM ‑AM model introduces additional com‑
plexity compared to unidirectional LSTMs, its architecture 
containing a single Bi ‑LSTM layer and optimized hyperpa‑
rameters ensures computational efficiency. Hence, future 
work will explore model compression techniques such as 
quantization for embedded systems.

Results and discussion
The datasets for training and testing of a lithium ‑iron 

phosphate (LiFePO4) battery were obtained from an experi‑
ment conducted by the Center for Advanced Life Cycle En‑
gineering (CALCE) [15]. Where an experiment employed the 
US06 dynamic tests on an A123 cell. The parameters of the 
battery used are described in Table 1.

Table 1. LFP cell parameters

Parameter Value

Cell dimensions 26 × 65 mm

Cell capacity (nominal/minimum) (0.5C rate) 2.5/2.4Ah

Internal impedance (1kHz AC typical) 6mΩ

Maximum continuous discharge 50A

Cycle life at 20 A discharge, 100% DOD >1000 cycles

Cell weight 76g

Voltage (nominal) 3.3V

Power 2600W/kg

Maximum pulse discharge (10 s) 120A

Operating temperature –30°C to 55°C

To simulate realistic EV battery loads, the DST and US06 
profiles were used to discharge battery samples at various 
temperatures. Developed by the US Advanced Battery Con‑
sortium [16], the DST profile includes varying current steps, 
while the US06 profile mimics highway driving with recent ac‑
celeration. After fully charging the battery using a constant‑
 ‑current/constant ‑voltage (CC ‑CV) mode, these profiles were 
applied until full discharge. Current, voltage, and temperature 
data were recorded every ten seconds [17]. The dataset was 
split for training and testing, with further validation performed 
on a subset of the training data.

Although the US06/DST profiles provide standardized 
testing conditions, real ‑world EV data may introduce varia‑
bility mainly irregular loads and regenerative braking. There‑
fore, future studies will incorporate real driving cycles to vali‑
date generalization.

Training results
For the SOC estimation task, time ‑varying current, vol‑

tage and temperature variables were selected as features 
xt= [It, Vt, Tt] and one variable as target yt = [SOCt]. The input 
features are monitored in real ‑time during the battery test. 
Ground truth values of SOC were obtained by the following 
formula:

(16) 

Where DOD represents the depth of discharge, which 
measures the discharge capacity of a fully charged battery 
divided by its rated capacity [18]. During the training step, 
the model’s parameters were determined using a hyper‑
 ‑parameter tuning search algorithm, allowing for fine ‑tuning 
and optimization. Selected values are presented in table 2.

MSE and MAE metrics were chosen as loss functions of 
the Bi ‑LSTM ‑AM model to accurately capture the discrepan‑
cy between estimated and actual SOC values during the for‑
ward pass. In order to investigate the influence of the number 
of epochs on the accuracy and performance of our model, 
values ranging from 50 to 400 epochs were selected to deter‑
mine the optimal number of epochs, ensuring that the model 
neither over fits nor under fits.

The training and validation results in table 3 and figure 4 
demonstrate the model’s strong predictive performance and 
computational efficiency. At 200 epochs, the model achieves 
its best results, with a validation MSE of 0.0022% and a vali‑
dation MAE of 0.0327%, highlighting its precision in SOC es‑
timation. The attention mechanism significantly improves ac‑
curacy by focusing on key time steps. While MSE and MAE 
consistently decrease during training, 200 epochs offer the 
optimal balance, as further training (250‒400 epochs) leads 
to demising returns and potential over ‑fitting, evidenced by 
a slight increase in validation error. With a total of training time 
of 63.47 seconds at 200 epochs, the model is both fast and 
scalable, making it well ‑suited for real ‑time SOC estimation 
in EV energy management systems.

Testing results
MAE, RMSE, and R ‑squared metrics were chosen as 

indicators for the final estimation performance evaluation. 
Table 4 and figure 5 provide the estimation results of the Bi‑
 ‑LSTM ‑AM model on the DST dataset. The experiments were 
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Table 2. Optimal hyper ‑parameters selected for the Bi ‑LSTM ‑AM 
model

Hyper ‑parameter Value
Activation function ReLU

Attention layers 1

Bi ‑LSTM layers 1

Batch size 1000

Dense layers 1

Dropout layers 1

Hidden units 110

Time sliding window 10

Table 3. Training and validation results

Epoch
Training dataset Validation dataset Total

training
time 

MSE% MAE% MSE% MAE%

50 0.0208 0.1294 0.0040 0.0510 23.29

100 0.0156 0.1108 0.0037 0.0485 34.85

150 0.0062 0.0664 0.0031 0.0527 50.36

200 0.0026 0.0345 0.0022 0.0327 63.47
250 0.0026 0.0447 0.0021 0.0370 77.88

300 0.0038 0.0533 0.0016 0.0308 94.25

350 0.0038 0.0675 2.3778e‑
 ‑3

0.0124 109.67

400 0.0048 0.0546 0.0013 0.0279 129.90

conducted at temperatures of 0°C, 25°C, and 50°C. As shown 
in Table 4, the RMSE and MAE values remain consistently 
low across the different temperatures, with slight variations: 
the RMSE ranges from 0.6467% to 0.6563%, and the MAE 
ranges from 0.48% to 0.4965%. these low error values, com‑
bined with high R ‑squared values (greater than 99.7% for all 
temperatures), demonstrate that the model provides highly 
accurate SOC predictions across the temperature range. The 

SOC estimation plots further confirm this accuracy, showing 
a near ‑perfect overlap between the predicted SOC values 
(in blue) and the true SOC values (in red) for all temperature 
conditions. The model maintains its precision even under 
extreme conditions, such as at 0°C and 50°C, where bat‑
tery performance can be affected by thermal stresses. The 
smooth trend and minimal deviation between predicted and 
actual SOC in these plots validate the robustness of the mod‑
el. The overall results indicate the model’s strong generaliza‑
tion ability, performing equally well across diverse operating 
temperatures, making it suitable for practical applications in 
electric vehicle battery management systems.

Table 4. Test errors and accuracy.

Operating 
temperatures [°C] RMSE [%] MAE [%] R ‑squared 

[%]
0 0.6563 0.4822 99.72

25 0.6537 0.4965 99.77

50 0.6467 0.4800 99.78

To assess robustness, we analyzed the model’s sensi‑
tivity to temperature fluctuations and aging effects. At 0°C, 
a ±5°C Deviation increases MAE by 0.12%, while simulated 
battery aging (20% capacity loss) raised RMSE to 0.71%. 
These results suggest the need for periodic recalibration in 
extreme conditions, which will be explored in future work.

The results in Table 5 provide a comprehensive com‑
parison of the proposed Bi ‑LSTM ‑AM model with state ‑of‑
 ‑the ‑art models for SOC estimation in lithium ‑ion batteries. 
Key metrics such as MAE and RMSE were evaluated across 
temperature conditions from 0°C to 50°C. The Bi ‑LSTM ‑AM 
model significantly improves both error metrics over existing 
models, particularly outperforming traditional LSTM ‑based 
models. Its consistently low error rates across varying tem‑
peratures highlight the model’s robustness. The attention 
mechanism likely contributes to this by enabling the model to 
focus on critical temporal dependencies during SOC estima‑

Table 5. performance metrics of previous approaches and our proposed model

Approaches Metrics

LSTM [6] –MAE = 0.6% (25°C)
–MAE = 1.6% (varying)

LSTM attention [11] –RMSE = 0.9593% (0°C)
–RMSE=0.8714% (25°C)
–RMSE= 0.9216% (45°C)

LSTM ‑AE [19] –MAE = 1.42% (0°C)
–MAE = 0.946% (25°C)

SBLSTM [20] –MAE=0.7%
–MAE=0.6%
–MAE=0.8%

LSTM ‑SW ‑SHAP [21] –MAE=1.55% –RMSE=2%

LSTM [17] –MAE=0.84% –RMSE=1.07%

Bi ‑LSTM ‑AM –MAE=0.6537% (25°C)
–MAE=0.6563% (0°C)
–MAE=0.6473% (50°C)

–RMSE=0.4965% (25°C)
–RMSE=0.4822% (0°C)
 ‑RMSE=0.48% (50°C)
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turing both historical and future information. This, combined 
with attention mechanisms that prioritize key input features, 
enhances its ability to adapt to variations in current, voltage, 
and temperature.

Bi ‑LSTM ‑AM’s adaptability is crucial for real ‑world BMS 
applications, where accurate SOC estimation is necessary 
under fluctuating temperatures. Notably, while models like 
LSTM ‑AE [19] show significant degradation at low tempera‑
tures (e.g., 1.42% MAE at 0°C), Bi ‑LSTM ‑AM maintains sta‑
bility and enhances the reliability and longevity of the battery 
systems in electric vehicles (EVs), especially in extreme cli‑
mates. Lower error rates demonstrate the model’s suitability 
for deployment in environments where temperature extremes 
are common.

Furthermore, Bi ‑LSTM ‑AM reduces both MAE and RMSE 
across operating temperatures, ensuring more reliable and 
precise SOC estimation, which improves vehicle perfor‑
mance and battery longevity. The model’s reduced com‑
putational complexity, with a single bidirectional layer and 
attention mechanism, makes it feasible for real ‑time BMS ap‑
plications where fast inference and low computational over‑
head are essential. Current experiments use laboratory data; 
however, preliminary collaborations with EV manufacturers 
are underway to test the model on real ‑work driving data. 
Initial results show comparable accuracy (±0.8% MAE) un‑
der dynamic loads, though further tuning may be needed for 
abrupt temperature shifts.

Future work could explore extending the Bi ‑LSTM ‑AM 
model to address state ‑of ‑health (SOH) estimation for lithium‑
 ‑ion batteries, as well as optimizing the model further for real‑
 ‑time deployment in resource ‑constrained environments. Ad‑
ditionally, applying this model to other battery chemistries 
and evaluating its performance in more dynamic tempera‑
tures ranges and operational conditions could offer valuable 
insights into improving battery management systems across 
various applications.

The proposed Bi ‑LSTM ‑AM model was implemented in 
Python using TensorFlow and Keras libraries. Although MAT‑
LAB code was not used, a simplified Python version of the 
source code can be provided upon request to support re‑
producibility.

Conclusion
This study addressed the challenge of accurate state of 

charge (SOC) estimation for lithium ‑ion batteries under var‑
ying temperature conditions by developing an optimized bi‑
directional long short ‑term memory model with an Attention 
Mechanism (Bi ‑LSTM ‑AM). The proposed model effective‑
ly overcame the limitations of traditional LSTM networks by 
leveraging bidirectional processing and attention to focus on 
the most relevant time steps, achieving an average accuracy 
exceeding 99.7% on unseen data. these results validates the 
research question, demonstrating that Bi ‑LSTM ‑AM provides 
a robust and efficient solution for SOC estimation with mini‑
mal noise, even in dynamic charging and discharging profiles. 
Though the model’s complexity may challenge resource‑
 ‑constrained systems, its high accuracy justifies its use in 
cloud ‑based BMS or high ‑performance edge devices.

The findings offer significant benefits to both society and 
academia. For society, the enhanced accuracy and reliabil‑
ity of SOC estimation directly supports safer and more effi‑

Fig. 5. SOC predictions and true values for DST datasets under dif‑
ferent temperatures.

tion. Unlike traditional models such as LSTM [6] and LSTM‑
 ‑AE [19], which struggle with changing ambient conditions, 
the Bi ‑LSTM ‑AM model’s bidirectional structure processes 
information in both forward and backward directions, cap‑



151PRZEGLĄD ELEKTROTECHNICZNY, R. 101 NR 6/2025

cient battery usage, reducing the risk of overcharging or deep 
discharging. These improvements extend battery lifespan, 
contribute to environmental sustainability, and enhance the 
performance of electric vehicles and other battery ‑powered 
applications. For academia, this work advances the field of 
deep learning in battery management systems by demon‑
strating the potential of combining bidirectional architectures 
with attention mechanisms, setting a foundation for future in‑
novations in battery modeling.

Despite its contributions, this research is limited by its re‑
liance on data collected under controlled conditions and its 
focus on a specific battery chemistry specifically on LFP bat‑
teries; however, the proposed framework may generalize on 
other chemistries such as NMC batteries with adjustments 
to input features. Testing across battery types is planned as 
future works.

Additionally, Future studies should investigate the model’s 
performance across a broader range of operating scenarios, 
incorporate additional features such as state of health (SOH) 
estimation, and validate its effectiveness on other battery 
types. such advancements will further strengthen the role of 
advanced neural networks in transforming lithium ‑ion bat‑
tery management.
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